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Abstract

Mode I, quasi-static, steady-state crack growth is analyzed for rate dependent materials under plane strain condi-

tions in small scale yielding. The solid is characterized by an elastic±viscoplastic constitutive law and the plane ahead of

the crack tip is embedded with a rate dependent fracture process zone. The macroscopic work of fracture of the material

is computed as a function of the crack velocity and the parameters characterizing the fracture process zone and the

solid. With increasing crack velocity a competition exists between the strain rate hardening of the solid, which causes

elevated tractions ahead of the crack tip that tend to drive crack propagation, and the rate strengthening of the fracture

process zone which tends to resist fracture. Results for material parameters characteristic of polymers show that the

toughness of the material can either increase or decrease with increasing crack velocity. To motivate the model,

the cohesive zone parameters are discussed in terms of failure mechanisms such as crazing and void growth ahead of the

crack tip. The toughness of rubber modi®ed epoxies is explained by employing the fracture model along with micro-

mechanical void cell calculations. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper focuses on the mechanics of steady-
state crack propagation in strain rate dependent
materials. Materials which can be described by a
simple elastic±visoplastic constitutive law will be
investigated. Emphasis is placed on slow crack

growth ( _a=cs � 10ÿ6) such that inertial e�ects are
negligible. Even in this regime of crack velocities,
the rate dependence of several polymer systems is
of su�cient sensitivity to cause the material
toughness to depend on crack speed. Recent ex-
periments by Du et al. (2000) on rubber-modi®ed
epoxy and Sener (1999) on epoxy adhesives have
shown that the fracture toughness can double or
half with a 5±10 fold increase in crack velocity. To
further complicate matters, the fracture toughness
does not have a unique trend with respect to the
crack velocity. As discussed in detail by Webb and
Aifantis (1995), there can exist certain regimes of
behavior where toughness increases with crack
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velocity and others where toughness decreases in a
given material. Our primary goal is to derive
general predictions about the material parameters
that dictate these trends. The second is to motivate
the analysis by referring to two well-de®ned sys-
tems, i.e. failure by crazing in amorphous poly-
mers and by cavitation in rubber modi®ed epoxies
or polyamides.

Fig. 1 is a schematic of a crack propagating in
an elastic±plastic solid under Mode I, plane strain,
small scale yielding, steady-state conditions. The
displayed shape of the plastic zone is the result of a
calculation for an elastic±perfectly plastic, rate
independent material. Far from the crack tip the
stresses follow the Mode I elastic K ®eld. As the
crack propagates through the solid, the crack tip is
surrounded by active plasticity, elastic unloading
and plastic reloading sectors (Drugan et al., 1982).
Far behind the crack tip there is a wake of residual
plastic strains where the material has unloaded
elastically.

For any steady-state fracture process the mac-
roscopic energy release rate, Css, can be written as

Css � Cf � Cp; �1:1�
where Cf represents the work of separation for the
near tip fracture process and Cp represents the
extrinsic toughening contribution from plastic
dissipation and stored elastic energy in the wake of
residual plastic strains. At the simplest level the
fracture process can be modeled by a one-dimen-
sional (i.e. no multiaxial loading e�ects) traction±
separation law which is embedded on the plane
ahead of the crack tip as depicted in Fig. 1. The
extrinsic contribution to the toughness depends on
the constitutive behavior of the bulk solid. Given
the bulk and fracture process properties, Css can be
computed numerically via the ®nite element
method. Embedded process zone (EPZ) models of
this type have been used to quantify the relation-
ship between Css and material parameters for
conventional elastic±plastic solids, strain gradient

Fig. 1. Computed shape of the plastic zone around a crack growing steadily in an elastic±perfectly plastic solid under small scale

yielding, Mode I loading conditions.
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elastic±plastic solids and ductile thin ®lm/substrate
systems (Tvergaard and Hutchinson, 1992; Wei
and Hutchinson, 1997a,b).

Tvergaard and Hutchinson (1992) have shown
that the signi®cant parameters controlling the
traction±separation law are the peak stress, r̂, and
Cf . The speci®c shape of the traction±separation
law is of secondary importance. Their work has
demonstrated that there is a signi®cant ``leverag-
ing'' e�ect on Css if r̂ is of su�cient magnitude.
For example, in an elastic±perfectly plastic solid, if
r̂ < 2:5ry , then signi®cant plastic dissipation is not
able to occur and Css is only slightly greater than
Cf . However, if r̂ > 3ry , then Css is unbounded
since the bulk solid cannot produce tractions
greater than 3ry on the plane ahead of the crack
tip. In strain hardening plastic solids Css is always
®nite but dramatic increases in toughness occur in
the range of r̂ � 3±5 ry . Generally, hardening of
the solid by accumulated plastic strain, strain
gradient e�ects or strain rate e�ects postpones the
elevation of Css to higher values of r̂.

The class of materials we will consider in this
paper harden as the e�ective plastic strain rate
increases. This implies that a fast growing crack
will have higher tractions acting on the plane of
separation than a slower crack. Therefore, faster
crack velocities will have a tendency to drive the
fracture process more readily. At ®rst glance this
suggests that Css decreases with increasing crack
speed, and we will show that this is the case when
the fracture process is rate independent. However,
it is likely that a rate dependent material will also
have a rate dependent fracture process. A classical
example is the crazing process in glassy polymers
(Kramer and Berger, 1990), and we could also
envision a rate dependent void growth and co-
alescence process in rubber modi®ed epoxies. The
addition of rate dependence to the fracture process
further complicates the model, not only do we
need to determine r̂ and Cf but we also need to
identify how these quantities vary with crack
opening rate. We will propose a simple form for
the rate dependence of the traction±separation
law. The two new parameters that we introduce in
the fracture process zone, the rate exponent q and
the characteristic opening rate _do, will be shown to
signi®cantly e�ect the Css vs _a behavior of the

material. Changes in these parameters can be as-
sociated with the propensity for ``rate strengthen-
ing'' of the fracture process zone. The rate
strengthening of the cohesive zone law introduces
a competition between the rate hardening of the
bulk solid, which tends to enhance crack growth
and the rate strengthening of the fracture process
zone, which resists propagation.

2. Rate dependent constitutive law of the solid

We adopt a rate dependent elastic±viscoplastic
constitutive model of the form used by Marusich
and Ortiz (1995) and Xia and Shih (1995):

1

 
� _�e p

_e0

!
� �r

ry

 !m

if �rP ry ; �2:1�

_�e p � 0 if �r < ry ; �2:2�
where �r � ���������������������3=2�sijsij

p
is the e�ective stress,

sij � rij ÿ �1=3�rkkdij is the deviatoric stress tensor,
ry the static tensile yield strength,

_�e p �
��������������������
�2=3� _ep

ij _ep
ij

q
is the e�ective plastic strain rate, _e0 a reference
plastic strain rate and m is the plastic strain rate
sensitivity exponent. In general the static tensile
yield strength may depend on the accumulated
plastic strain. However, being primarily concerned
with rate e�ects, we will assume perfect plasticity
for static loading and hence ry is a constant. This
form of the constitutive law was chosen over the
form �r=ry � 1� _�e p= _e0

ÿ �n
due to a more favorable

®t with uniaxial tension data obtained from Sener
(1999) on an epoxy resin. The components of the
plastic strain rate are then given by

_ep
ij �

3

2
_�e p sij

�r
: �2:3�

Finally, the elastic strain rates are given by

_ee
ij �

1� m
E

_rij ÿ m
E

_rkkdij; �2:4�

where E and m are the isotropic YoungÕs modulus
and PoissonÕs ratio. Notice that this form of the
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constitutive law allows for a well-de®ned region of
elastic response which is required for the small
scale yielding approximation to be used.

Here we have neglected the e�ects of visco-
elasticity. Fracture of viscoelastic solids has been
investigated by many authors, see Bradley et al.
(1998) for a review. In order to reduce the number
of parameters of the model and concentrate on
rate e�ects, we have also neglected softening after
initial yield and rehardening after molecular chain
alignment that occurs in many polymer materials.
Recently, Estevez et al. (1999) have studied crack
growth with an EPZ model in glassy polymers with
a constitutive law that allows for both softening
and rehardening.

3. Fracture process constitutive law

The rate dependence for the fracture process
zone is taken to follow a similar functional form as
that for the bulk solid. In order to facilitate the
®nite element calculations it is assumed that there
is always an initial linear portion in the traction±
separation law. Hence, the crack opening dis-
placement, d, is the sum of an elastic (linear) and a
plastic part. The cohesive traction obeys

_t � r̂k1

_dÿ _dp

dc

; �3:1�

where k1 is a shape parameter of the static trac-
tion±opening law and dc is the critical crack
opening where tractions drop to zero. The plastic
opening rate, _dp, is described by

1

 
�

_dp

_do

!
� t

t0 dp� �
� �q

for t > t0 dp� �; �3:2�

_dp � 0 for t < t0 dp� �; �3:3�

t � 0 if d > dc; �3:4�
where _do is a characteristic crack opening rate, t
the normal traction acting on the crack plane, q
the rate exponent of the fracture process zone and
t0 dp� � represents the static form of the traction±
separation law. We also impose condition (3.4)
requiring that the total crack opening, d, must

always be less than the critical crack opening, dc,
for all applied opening rates otherwise the traction
must drop to zero. This is a somewhat arbitrary
assumption of the model, which is not necessarily
valid for all failure mechanisms; however it does
appear to be valid for a crazing failure mechanism
(Doll, 1983; Kramer and Berger, 1990). This form
of the cohesive zone law is similar to that used by
Freund and Lee (1990) to study dynamic visco-
plastic fracture within the context of a strip yield
model. In their work, to allow for an analytical
solution, t0 dp� � is constant and the rate exponent q
is equal to 1.

For static loading the traction±separation law is
taken to be the same as that used by Tvergaard and
Hutchinson (1992). The traction±separation law is
shown in Fig. 2 for a range of applied opening
rates. The quantity t0 plus the additional linear part
of the traction±separation relation is represented
by the curve in Fig. 2 corresponding to _d � 0. The
static work of separation per unit area is

C0 �
Z dc

0

t dd � 1

2
r̂dc 1� � k2 ÿ k1�; �3:5�

where k1 and k2 are dimensionless shape parame-
ters denoting relative opening displacements where
the static traction±separation law changes slope
abruptly as shown in Fig. 2.

The traction±separation law is then speci®ed by
the static intrinsic toughness C0, peak stress r̂,

Fig. 2. Traction±separation law corresponding to various

opening rates for a rate exponent, q� 10.
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shape parameters k1 and k2, and rate properties _do

and q. In the context of conventional rate inde-
pendent plasticity, Tvergaard and Hutchinson
(1992) showed that the macroscopic toughness of
the material has only a weak dependence on the
shape parameters k1 and k2. We note that the de-
termination of _do and q likely remains in the realm
of micromechanics and in this work we will resort
to a parametric study to map out the e�ects of
these variables.

4. Steady-state formulation

A quasi-static, asymptotic Mode I, plane strain
analysis is carried out for a semi-in®nite crack
propagating at constant velocity _a. A small scale
yielding formulation is used such that the elastic
Mode I stress and displacement ®elds are applied
far from the crack tip. Assuming that the crack is
growing in the x1 direction any rate quantity can be
related to the x1 spatial derivative through the crack
velocity. For example the plastic strain rates are

_ep
ij � ÿ _a

oep
ij

ox1

�4:1�

and any other quantity can be substituted for ep
ij in

(4.1) with equal validity. The iterative ®nite ele-
ment solution procedure used to solve the steady-
state problem is the same as that used by Dean and
Hutchinson (1980), Parks et al. (1981), Lam and
McMeeking (1984), Wei and Hutchinson
(1997a,b), and Dhirendra and Narasimhan (1998).
The virtual work statement for the quasi-static
steady-state problem isZ

V
deijCijklekl dV �

Z
S

duiTi dS

�
Z

V
deijCijkle

p
kl dV ; �4:2�

where S is the boundary of the volume V, ui are the
displacements, eij is the in®nitesimal strain tensor,
Cijkl the tensor of isotropic elastic sti�ness, Ti the
traction acting on the boundary and ep

ij are the
plastic strains. Given a solution for the displace-
ment ®eld, the plastic strains can be obtained by
integrating the plasticity law along streamlines. In

this work, a backward Euler method as described
in the ABAQUS Theory Manual (1997) is used to
integrate the constitutive law. The new distribu-
tion of plastic strains is then integrated as a body
force in the second term of the right-hand side of
(4.2) and a new solution for the displacement ®eld
is computed. The procedure is repeated until
convergence is achieved.

5. Results

In this section, results for the macroscopic
steady-state toughness will be presented as a
function of model parameters. The condition im-
posed on the ®nite element calculations for steady-
state crack propagation is that d � dc at x1 � 0.
Dimensional analysis suggest that the macroscopic
steady-state toughness depends on the following
dimensionless parameters:

Css

C0

� �C
_a

R0 _e0

;
r̂
ry
;

_do

dc _e0

;m; q;
ry

E
; m; k1; k2

 !
; �5:1�

where

R0 � 1

3p
E

1ÿ m2

� �
C0

r2
y

� 1

3p
K0

ry

� �2

�5:2�

is the approximate size of the plastic zone when the
applied stress intensity, K, is equal to K0, where K0

is related to C0 through (5.2). Previous studies on
rate independent materials have demonstrated that
the last four parameters in (5.1) are of secondary
importance. For the bulk of this study we will use
the following values for these parameters:
E=ry � 50, m � 0:35, k1 � 0:15 and k2 � 0:5. This
leaves us with the task of mapping out the e�ects
of the remaining ®ve parameters. However, in
Section 5.3 we will examine the crack plane trac-
tion and opening pro®les using di�erent shapes of
the cohesive zone law.

5.1. Rate independent fracture process zone

The ®rst set of results shown in Fig. 3 are for a
solid with rate exponent m � 10 and a rate inde-
pendent fracture process zone. The rate
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independent fracture process zone is a limiting case
of Eqs. (3.1)±(3.4) with _do= _e0dc� � ! 1 or q!1.
Justi®cation for a rate independent process zone
associated with a rate dependent solid will be given
in Section 6. Fig. 3 plots the steady-state toughness
as a function of the peak cohesive stress in the
fracture process zone. For values of r̂ < 2ry the
plasticity in the bulk solid is not of su�cient in-
tensity to induce a signi®cant amount of dissipa-
tion and the steady-state toughness is only slightly
greater than C0. For exceedingly slow crack ve-
locities the model reduces to a rate-independent
elastic±perfectly plastic material where the solid
cannot sustain normal tractions greater than ap-
proximately 2:96ry ahead of the crack tip. Hence,
if r̂ > 2:96ry , then the fracture process zone can-
not separate and Css is in®nite. At ®nite crack ve-
locities the strain rate e�ects in the solid become
relevant. Increasing crack velocities allow for ele-
vated normal traction acting on the crack plane.
However, the normal traction ahead of the crack
tip cannot exceed r̂ which limits the intensity of
the plastic deformation and hence the toughness of
the material decreases as crack velocity increases.
The e�ects shown in Fig. 3 are analogous to strain
hardening or strain gradient hardening e�ects in
rate independent materials (Wei and Hutchinson,
1997a,b). The general trend is that material hard-

ening elevates tractions ahead of the crack tip,
which promote the separation of the fracture
process zone.

Fig. 4 further illustrates the e�ects of crack ve-
locity on Css for the rate independent fracture
process zone. Three curves are shown in Fig. 4
each for a di�erent level of the strain rate exponent
of the bulk solid and a peak cohesive stress of
r̂ � 3ry . Again, Css decreases as the crack velocity
increases. Lower values of m magnify the solids
tendency for hardening due to rate e�ects, and
therefore at a given crack velocity, the toughness
of a material with a low value of m is less than that
of a material with a large strain rate exponent.
Overall, the trends in Css as a function of _a or m for
a material with a rate-independent fracture process
zone are readily explained by considering the
hardening ability of the bulk solid.

5.2. Rate dependent fracture process zone

The introduction of a rate dependent fracture
process zone sets up a competition between the
hardening of the solid and the strengthening of the
cohesive zone. As such, trends in the steady-state
toughness are not as straightforward as that for
the rate independent fracture process. Further-

Fig. 4. In¯uence of the rate exponent of the bulk material on

the steady-state toughness as a function of the crack velocity for

a rate independent fracture process.

Fig. 3. The steady-state toughness as a function of the peak

stress for di�erent crack velocities with a rate independent

fracture process.
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more, Css is sensitive to the two rate parameters
associated with the fracture process, q and _do. It is
likely that q and _do will be di�cult to measure
directly, leaving their determination to microme-
chanical models of the fracture process.

In the limit as r̂=ry ! 0 the steady-state
toughness is equal to the static work of fracture.
At ®rst glance this is not obvious when the fracture
process zone is rate dependent. The limit of
r̂=ry ! 0 corresponds to two elastic half spaces
bonded by a cohesive zone described by Eqs. (3.1)±
(3.4). Recall that for a simple Dugdale zone the
cohesive zone length scales as Edc=r̂ with the
opening rate scaling as _ar̂=E which approaches
zero as r̂! 0. Hence, the static traction±separa-
tion law is valid as r̂=ry ! 0 and the macroscopic
work of fracture is C0 since any plastic dissipation
is also negligible in this limit. For the case where
q � 1 where tractions are considerably more sen-
sitive to opening rates than any cases we consider,
Freund and Lee (1990) also obtain this result.

Fig. 5 plots Css as a function of r̂ for various
crack velocities. The rate exponent for the fracture
process was taken to be equal to that of the solid
for these simulations, q � m � 10. Focusing ®rst
on the solid curves with the normalized reference

crack opening rate _do= _e0dc� � � 1, we note that
steady-state toughness now increases as the crack
velocity increases. Within the range of Css shown,
the strengthening of the fracture process domi-
nates the hardening in the bulk solid. The two
dotted lines in Fig. 5 are the results for a nor-
malized crack velocity of _a= _e0R0� � � 100 and ref-
erence crack opening rates of _do= _e0dc� � � 0:1 and
10. For a given crack opening rate, Eq. (3.2) in-
dicates that the traction acting across the crack
faces decreases as _do increases. Crudely, increasing
_do is similar to decreasing r̂ at a given opening
rate.

Notice that the solid curves in Fig. 5 seem to
approach the _a= _e0R0� � ! 0 curve from the left as
the crack velocity decreases. This appearance is
due to the range of Css shown in the ®gure. Notice
that the _a= _e0R0� � � 100, _do= _e0dc� � � 10 simula-
tions cross over the _a= _e0R0� � ! 0 curve. This is
also the case for the _do= _e0dc� � � 1 cases; however
the crossover occurs at much higher values of Css.
A similar change in the toughness vs crack velocity
trend is evident for a value of q � 2m to be pre-
sented next.

As we have stated throughout q and _do could be
obtained from a micromechanical analysis. Kra-
mer and Berger (1990) present a model for craze
widening and under their assumptions the rate
exponent for the craze widening is predicted to be
twice that for bulk deformations. We note that
their assumed form of the bulk constitutive law
was power law viscous which is similar to Eq. (2.1)
except that no yield surface exists, i.e. the additive
constant of 1 is removed from the left-hand side of
(2.1) and plastic straining occurs at all stress levels.
For increasing levels of q, Eq. (3.2) indicates that
for a given applied opening rate the traction acting
across the crack surfaces decreases. As shown in
Figs. 3 and 4 the rate independent fracture process
limit corresponds to q!1. Hence, an increase in
q will have similar e�ects on Css as an increase in
_do. Fig. 6 plots Css as a function of r̂ for three
crack velocities and q � 2m � 20. Here again a
crossover in the trend of toughness vs velocity
occurs. For static peak cohesive stresses lower
than approximately 2:7ry , Css increases slightly as
_a increases. However, for r̂ > 2:7ry the toughness
decreases dramatically as the crack velocity

Fig. 5. The steady-state toughness as a function of the peak

stress for di�erent crack velocities with a rate dependent frac-

ture process characterized by q� 10. The dashed curves illus-

trate the e�ect of the reference opening rate on the steady-state

toughness.
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increases (within the range of velocities shown).
This transition in behavior is illustrated again in
Fig. 7 with Css plotted against _a for 4 levels of r̂.
Notice that for r̂ � 2:7ry the toughness would
essentially be independent of the crack velocity in
the range of _a= _e0R0� � � 10±1000; an interesting

result for a system with rate dependence in both
the solid and the fracture process.

5.3. Crack plane traction and opening

To elucidate the features of the fracture process
we now present results for the traction and open-
ing pro®les ahead of the crack tip from simulations
with di�erent rate independent forms of the trac-
tion±separation law. The generalization to rate
dependent behavior still follows Eqs. (3.1)±(3.4).
The results plotted in Figs. 8±10 are for simula-
tions with r̂ � 3ry , _a= _e0R0� � � 100, q � 2m � 20
and _do= _e0dc� � � 1; however the general trends of
the solution variables to be presented are similar
for other sets of model parameters as well. We
note that the Css values predicted from the two
di�erent shapes of the traction±separation law
di�ered by less than 1%. Also the size of the actual
plastic zone, Rp, is used to normalize the distance
from the crack tip and is de®ned as

Rp � R0

Css

C0

: �5:3�

Fig. 8 plots the crack opening displacement (left
ordinate) and the normal stress acting on the co-
hesive surfaces (right ordinate) as a function of the
distance ahead of the crack tip. The solid lines
(Case 1) are results from the simulation with the

Fig. 7. In¯uence of the peak stress on the steady-state tough-

ness as a function of the crack velocity for a rate dependent

fracture process characterized by q� 20.

Fig. 8. Crack opening displacement and cohesive traction

ahead of the crack tip for two di�erent shapes of the cohesive

zone law. The rate dependent fracture process is characterized

by q� 20.

Fig. 6. The steady-state toughness as a function of the peak

stress for di�erent crack velocities with a rate dependent process

zone characterized by q� 20.
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shape of the traction±separation law used to gen-
erate the previous results, i.e. k1 � 0:15 and
k2 � 0:5. The dashed lines (Case 2) are from a
simulation with a traction±separation law with the
same rate independent peak stress and fracture
energy as for Case 1 but with a precipitous drop in
cohesive stress at the critical opening as drawn in
Figs. 8±10, i.e. k1 � 0:2 and k2 � 1. Note that for
the purpose of comparison dc always refers to the
critical opening for the cohesive zone law of Case 1
and consequently the critical opening displacement
for Case 2 is 0:75dc.

The crack opening pro®les for both traction±
separation laws are similar. As shown in Fig. 8 the
crack opening displacement decreases monotoni-
cally with increasing distance from the crack tip.
The contrast near the crack tip in the crack face
traction pro®les occurs due to the di�erence in the
continuity of the traction±opening law at ®nal
separation. For Case 1, the traction goes to zero in
a continuous fashion as the opening approaches
the critical opening; hence the traction at x � 0
must vanish and build to a maximum at some
distance from the crack tip. In comparison, the
traction±separation law is discontinuous in Case 2
and the traction to the right of the crack tip will
not be zero, and in fact attains a maximum value.
The open circle on the traction pro®le of Case 1
indicates the position where the maximum traction
occurs.

Fig. 9 displays the traction vs separation that
every material point on the cohesive surface ex-
periences as the crack tip passes. The area under
these curves represents the intrinsic contribution to
the macroscopic toughness of the material. The
energies required to separate the process zones in
Cases 1 and 2 are 1:3C0 and 1:24C0, respectively.
Recall that the steady-state toughness of the ma-
terials in Cases 1 and 2 di�ered by less than 1%,
Css � 5:8C0 in both cases. Hence, the plastic dis-
sipation must be slightly greater in Case 2 to ac-
count for the di�erence fracture process energy.
Furthermore, Figs. 8 and 9 demonstrate that dif-
ferences between the two cases occur only very
near the crack tip during the ®nal separation of the
process zone.

Lastly, Fig. 10 is a plot of the crack opening
rate as a function of the distance ahead of the
crack tip. First, notice the location of the open
circle for Case 1. This position corresponds to the
position where the maximum traction occurs as
indicated in Fig. 8. Consider a material point on
the crack plane. Far downstream the traction,
opening and opening rate are all equal to zero
and as the crack tip approaches, these variables
increase gradually. Close to the crack tip the
traction at a material point reaches a maximum
and then diminishes (Case 1) or increases mono-
tonically (Case 2) and the crack opening rate in-
creases dramatically. This region of the opening

Fig. 9. The cohesive traction±separation pro®le that each ma-

terial point experiences as the crack passes for two di�erent

shapes of the cohesive zone law.

Fig. 10. Crack opening rate ahead of the crack tip for two

di�erent shapes of the cohesive zone law.

C.M. Landis et al. / Mechanics of Materials 32 (2000) 663±678 671



rate pro®le is dependent on the form of the
traction±separation pro®le as demonstrated by
the di�erences between Cases 1 and 2. Notice that
the opening rate at the crack tip for Case 1 ap-
pears to approach a ®nite value, while the results
for Case 2 suggest a singularity in the opening
rate. The ®nite element solution cannot con®rm a
singularity in the opening rate for Case 2. How-
ever, it is well known that the analytical result for
a steadily growing crack between two elastic half
spaces bonded by a Dugdale zone, which has a
similar abrupt drop in traction at the critical
opening displacement as for Case 2, yields a
logarithmic singularity in the opening rate at the
crack tip.

6. The fracture process for rubber-toughened epox-

ies

In this section, we will connect the EPZ model
of the previous sections with micromechanical
void cell computations in order to interpret the
experimental observations of Du et al. (2000) on
the toughness of a rubber modi®ed epoxy. As
such, the experimental ®ndings of Du et al. (2000)
are presented ®rst. Then, utilizing the analysis
from the steady-state fracture model, qualitative
predictions about the features of the fracture
process in this material are produced. Finally, void
cell computations at di�erent mesoscopic applied
strain rates are performed assuming that a critical
stress fracture criterion in the intervoid ligament
governs ®nal failure. The critical stress fracture
criterion in the ligament is motivated by observa-
tions of the fracture planes from the experiments.
This process of coupling the EPZ model with the
void cell calculations and experimental observa-
tions reveals the signi®cant features of the fracture
process for this material.

6.1. Macroscopic observations and deductions of the
model

Experimental observations of the e�ects of
crack velocity on the toughness of rubber-tough-
ened epoxy were recently performed by Du et al.
(2000). The rate dependent fracture behavior of a

rubber modi®ed epoxy (10% volume fraction of 1±
2 lm diameter rubber particles) was investigated
using double cantilever beam tests at various load
point displacement rates. Fig. 11 plots the fracture
toughness as a function of crack advance for three
di�erent applied displacement rates. During these
tests, the crack velocity ®rst increases slowly and,
near the peak toughness, dramatically accelerates
with crack advance becoming unstable. Hence, the
interpretation of the crack resistance curves is not
straightforward due to transient e�ects associated
with the changing crack velocity, i.e. no steady-
state fracture toughness can be inferred from these
experiments. Nonetheless, a clear decrease of the
fracture resistance, CR, with increasing crack speed
is observed. The crack velocity of the fastest test is
typically three times larger than in the slowest test
at the same level of crack advance Da. The fracture
toughness at crack initiation is about 2 kJ/m2 and
changes only slightly with increasing crack veloc-
ity. As discussed by Du et al. (1998), this value is
an upper bound on the true initiation toughness
due to the experimental di�culty in determining
the onset of crack propagation. Assuming that the
initiation toughness does not change signi®cantly,
the trend of Fig. 11 suggests that for a test per-
formed at larger displacement rates (crack veloci-
ties) little to no increase of toughness would be
observed during propagation.

Fig. 11. Experimental crack growth resistance curves for a

modi®ed rubber epoxy. The tests were performed by Du et al.

(2000) on double cantilever beam specimen loaded at three

di�erent displacement rates. The crack tip velocities at initiation

and just prior to instability are recorded on the plot.
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From these fracture toughness measurements
alone we can infer some qualitative characteristics
of the fracture process by considering the results
from the EPZ model presented in Figs. 3, 5 and 6.
First, the macroscopic toughness of the material
decreases as the crack velocity increases implying
that the rate hardening e�ects in the bulk dominate
the rate strengthening e�ects in the fracture pro-
cess zone. Figs. 3 and 6 show that decreases in
toughness with increasing crack velocity occur in
the regime where the rate independent peak co-
hesive stress, r̂, is greater than about three times
the rate independent yield stress of the bulk solid.
Furthermore, in the regime where r̂ is approxi-
mately 3ry the rate properties of the fracture
process zone, q and _do, signi®cantly e�ect the
sensitivity of the macroscopic toughness to the
crack velocity. Focusing on the e�ects of q, com-
parison of Figs. 3 and 6 illustrates that the mac-
roscopic toughness increases more rapidly for
smaller values of q (recall that the rate independent
fracture process used to generate Fig. 3 is the limit
as q!1). The experimental observations suggest
that for a threefold increase in crack velocity the
macroscopic toughness of the material is decreased
by about a factor of 2. Therefore, it is reasonable
to believe that the fracture process for this material
is less rate sensitive than the bulk material, i.e.
q > m. To demonstrate how this is possible, we
now resort to micromechanical calculations of
void growth and ligament fracture around the
rubber particles.

6.2. Microscopic observations and a void cell model

Along with macroscopic measurements of the
fracture toughness, Du et al. (2000) also observed
the morphology of the fracture surfaces of the
broken specimens. The fracture surfaces consist of
dimples separated by ¯at, seemingly brittle liga-
ment failures. Similar observations have been re-
ported in the literature by Pearson and Yee (1986),
Kinloch et al. (1986) and Pearson and Yee (1991).
A critical porosity of 17% has been estimated from
the size of the dimples. This porosity is constant
along the part of the crack front corresponding to
the stable crack growth regime, which encom-
passes almost two orders of magnitude of crack

velocity. On the part of the fracture surface cor-
responding to unstable fast cracking the critical
porosity drops to 10.5%, implying almost no void
growth, see also Pearson and Yee (1986). The in-
crease in porosity from 10% to 17% requires sub-
stantial plastic dissipation due to void growth in
the material. From these observations we propose
a simple model for the fracture process. During
void growth the ligaments between voids are
plastically deformed to large strains causing an
increase of the local stress from orientational
hardening induced by the alignment of the poly-
mer chains. Large stresses can then accrue in the
ligament allowing failure by a brittle mechanism.
Hence, we assume that the cavities will grow until
the stress state between the voids attains a critical
level leading to ®nal fracture of the remaining
ligament.

Void cell computations with typical epoxy
properties were performed at di�erent levels of
applied overall strain-rate. The system that is an-
alyzed in the present work is envisioned as a pe-
riodic array of hexagonal prism unit cells each
containing a centered, initially spherical void. For
the sake of simplicity, this assemblage is approxi-
mated by circular cylinders allowing for axisym-
metric calculations, which have been shown to
provide a good approximation to the hexagonal
cells (e.g. Worswick and Pick, 1990). The meso-
scopic principal strains and a special ``e�ective''
strain measure are given by

Er � ln
Lr

Lr0

� �
; Ez � ln

Lz

Lz0

� �
;

Eeff � 2

3
Ezj ÿ Erj:

�6:1�

The mesoscopic true principal stresses, Rr and Rz,
are the average forces at the cell boundary per
current area. The e�ective stress, hydrostatic
stress, and stress triaxiality measures are

Re � Rzj ÿ Rrj; Rh � 1

3
Rz� � 2Rr�;

T � Rh

Re

:

�6:2�
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One di�culty in determining a simple one-di-
mensional process zone model from a microme-
chanical analysis is that the stress state
representative of the loading history experienced
by a material element deforming near the crack tip
must be assumed. In metals, Anderson (1977) and
Tvergaard and Hutchinson (1992) have argued
that uniaxial straining is a good approximation to
the crack tip deformation state since after the
maximum stress is reached, damage localizes in
one band while the rest of the material unloads,
behaving as a rigid body. However, for rubber-
toughened epoxy, the relatively large porosities
relieve the triaxial stress ®eld (see also Yee et al.
1993). Miao and Drugan (1995) analyzed the
problem of steady-state crack propagation in a
porous elastic±perfectly plastic matrix, using the
Gurson model (Gurson, 1977). Speci®cally, they
showed results for the e�ect of the porosity on the
stress triaxiality at the tip of a growing crack. The
stress triaxiality decreases almost linearly with
porosity in the analyzed range of porosity (from 0
to 5%). Extrapolation of their results to the po-
rosity of interest in this paper, i.e. 10%, gives
stress triaxiality equal to 0.8. We note that accu-
rate determination of the stress triaxiality is
compromised by both the extrapolation procedure
and by the fact that the Gurson model loses ac-
curacy at high levels of porosity. However, the
approximations used are within reason and
T� 0.8 has been chosen for the computations
presented herein.

The void cell computations were performed
within the ®nite strain setting using the general-
purpose ®nite element program ABAQUS version
5.7 (1997). Axisymmetric 9-node isoparametric
elements with reduced integration were imple-
mented. We assume that the rubber particles de-
bond or cavitate at low strains when the epoxy is
deforming elastically as suggested by the analysis
of Lazzeri and Bucknall (1995) and therefore the
particle is treated as a void. All the computations
have been performed for an initial porosity of
10%. The void is initially spherical and the void
spacing is the same in the r- and z-directions.

As in the ®rst part of this paper, isotropic
elasticity is assumed as well as a strain±rate de-
pendent plasticity model

1

 
� _�e p

_e0

!
� �r

r0

 !m

if �r P r0; �6:3�

_�e p � 0 if �r < r0: �6:4�
In an attempt to account for orientational hard-
ening, isotropic linear hardening is implemented
above a critical e�ective plastic strain ec. Then the
reference stress r0 is de®ned as

r0 � ry if �e p6 ec; �6:5�

r0 � ry � H��e p ÿ ec� if �e p > ec: �6:6�
This description of orientational hardening is

approximate for two reasons. First, orientational
hardening is most e�ectively modeled with kine-
matic hardening and requires the introduction of a
back stress tensor (Boyce et al., 1988; Wu and Van
der Giessen, 1993). However, for nearly propor-
tional loading, as analyzed in the cell computa-
tions, no di�erence exists between kinematic and
isotropic hardening. Second, a geometrical model
for the onset of the orientational hardening should
be based on a critical principal plastic strain rather
than a critical e�ective plastic strain. However, as
only one stress state characterized by a constant
stress triaxiality is addressed, this approximation
will only have a minor e�ect on the analysis pre-
sented here.

Most of the computations have been performed
with constant applied axial displacement rate. We
have also explored how the cell reacts when a more
realistic displacement rate history is applied typical
of that experienced by a material element as the
crack tip approaches. More precisely, the dis-
placement rate history was taken from the results
generated from the steady-state solution with the
fracture process zone from Case 2 of Section 5.3.

Table 1 summarizes the values of the parame-
ters used to generate the results presented in this
section. These mechanical parameters come from
experimental measurements of Sener (1999) on an
epoxy resin strained at di�erent rates which agree
very well with values given by Crocombe et al.
(1995) or used by Huang and Kinloch (1992). The
overall stress and strain quantities as well as the
current porosity and the stresses in the intervoid

674 C.M. Landis et al. / Mechanics of Materials 32 (2000) 663±678



ligament are computed. The maximum value of
the mean stress in the ligament will be considered
as the fracture criterion for ®nal ligament failure.

6.3. Results

Fig. 12 plots the variation of the normalized
overall axial stress Rz=ry as a function of the
normalized axial displacement d=X0 for cell simu-
lations performed at constant axial displacement
rates _d= _e0X0 with T� 0.8. Fig. 12 also displays the
result of a cell simulation performed with a vary-
ing rate corresponding to a crack velocity
_a= _e0R0 � 100 and other model parameters dis-
cussed for Case 2 of Section 5.3. The maximum
displacements in Fig. 12 corresponds to one par-
ticular choice for the fracture criterion,
rmc=ry � 3:5. A signi®cant change in the behavior
of the cell is observed when the normalized dis-
placement rate increases from 104 to 105. Also, the
peak stress decreases slightly with increasing ap-
plied displacement rates.

Fig. 13 plots the work done in straining the cell
(normalized by the yield stress and by the void
spacing, C0=ryX0) and the overall peak stress,
Rmax

z =ry , as a function of the applied displacement
rate. The transition in behavior as the rate goes
from 104 to 105 is clear. For rates below the
transition, C0=ryX0 is nearly constant while
Rmax

z =ry increases slightly with increasing rate. In
this regime, the sensitivity of Rmax

z =ry to _d= _e0X0 has
been characterized by the functional form of (3.2),
giving a value of q equal to 100. The fact that the
rate exponent of the peak stress is 10 times that of
the bulk solid implies that, to a good approxima-
tion, the peak stress can be considered as rate in-
dependent. At ®rst glance these two results, that
the peak stress and fracture energy of the cohesive
zone are independent of the applied opening rate,
imply that the fracture process is rate independent.
However, strictly speaking, the cohesive zone
model emanating from the micromechanical
analysis cannot be considered as truly rate inde-
pendent. Fig. 12 illustrates that the shape of the
traction±separation pro®le is dependent on the

Fig. 12. Overall stress displacement curves for the void cell

computations. Solid lines correspond to di�erent levels of uni-

form applied displacement rates. The dotted line refers to a

result obtained with a varying applied displacement rate con-

sistent with the steady-state calculation of Case 2 in Figs. 8±10.

Fig. 13. Work spent per unit area and maximum overall stress

obtained with the void cell computations as a function of the

opening rate.

Table 1

f0 E=ry m ec E=ry m _�E= _e0 Stress state

0.1 50 0.35 0.3 7.5 10 10ÿ4±106 T� 0.8

C.M. Landis et al. / Mechanics of Materials 32 (2000) 663±678 675



opening rate. When a crack propagates through
the material the opening rate at a material point is
initially very small but increases rapidly as the
crack tip approaches. Hence, this type of varying
rate history yields a smaller work of separation
than the uniform rate history. To illustrate this
e�ect, the work of separation and peak stress
corresponding to the crack velocity _a= _e0R0 � 100
have been added in Fig. 13 using the average
opening rate to plot along the abscissa. The peak
stress predicted from the varying opening rate
simulation is in accord with the predictions from
the constant rate calculations. However, the work
of fracture for the varying opening rate
( _a= _e0R0 � 100) is 10% lower than the work of
fracture for the uniform displacement rate simu-
lations. It is worth noting that the traction±sepa-
ration pro®le for a varying displacement rate
corresponding to an extremely small crack velocity
will coincide with the result for a very slow uni-
form applied displacement rate.

As a ®nal check on the void cell calculations,
the ®nal porosity computed from the model is
compared to the experimentally observed porosi-
ties. In agreement with the observations of Du
et al. (2000) a fairly constant critical porosity is
found below the peak stress/work of fracture
transition (fc� 0.19 in the computations while
fc� 0.17 experimentally) while above the transi-
tion almost no void growth occurs. The transition
observed in the calculations gives a possible ex-
planation for the cracking instability observed
when the crack velocity increase above a given
value. The transition predicted by the void cell
calculations supplies a credible explanation for the
instability observed experimentally as the crack
velocity increases. The model suggests that for
su�ciently high crack velocities a large stress in
the intervoid ligament can be attained before a
signi®cant amount of plasticity accumulates, re-
sulting in a reduction of the toughness of the
fracture process.

7. Discussion and conclusions

The results of the model with the rate inde-
pendent fracture process can be divided into two

regimes, r̂ < 2:5ry and r̂ > 2:5ry , see Fig. 3. For
values of r̂ less than about 2:5ry rate e�ects in the
bulk solid have little signi®cance in determining
the steady-state fracture toughness of the material.
In this regime of cohesive stresses Css is not en-
hanced by extrinsic toughening e�ects associated
with the wake of residual plastic strains. While for
r̂ above 2:5ry , and more signi®cantly above 3ry ,
extrinsic toughening represents a signi®cant por-
tion of Css for relatively slow crack velocities.
However, due to rate hardening, high crack ve-
locities allow the solid to overcome the peak co-
hesive stress of the fracture process more easily,
thus reducing the steady-state toughness.

For a rate dependent fracture process zone
where both the toughness and strength increase
with increasing crack opening rate, predictions of
the model are more complicated. However, a
simple rule of thumb could be proposed: if the
peak cohesive stress is less than approximately 3ry

then the steady-state toughness will increase with
increasing crack velocity while the opposite trend
holds for r̂ > 3ry . The multiplicative coe�cient of
3 is a remnant of the perfectly plastic description
of the static stress±strain behavior and the intro-
duction of strain hardening will change the mag-
nitude of the peak stress where this transition
occurs. Finally, the rate of increase/decrease of Css

with respect to crack velocity is quite sensitive to
the q and _do parameters of the fracture process.

One last feature of the crossover described
above is that it does not occur at the same level of
r̂=ry for every crack velocity. In other words, there
exists a small range of r̂=ry where the toughness
initially increases but then decreases with increas-
ing crack velocity. As an example, for r̂ � 2:9ry

Fig. 6 shows that Css increases in the range of
_a= _e0R0� � � 0±10 but then decreases for
_a= _e0R0� � � 10±1000. This non-monotonic tough-
ness±velocity behavior occurs in many polymeric
materials and is discussed in detail in Webb and
Aifantis (1995). This is an interesting prediction of
the model, however we note that transitions in the
toughness±velocity behavior are more likely to
occur due to changes in the fracture process.
Along these lines Freund and Lee (1990) demon-
strate such a transition by comparing ductile and
brittle fracture criteria in a rate dependent strip
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yield model. Also, another ductile to brittle tran-
sition was illustrated with the micromechanical
model presented in Section 6.

Finally, void cell simulations were performed to
elucidate the fracture process in rubber toughened
epoxies and to compliment the predictions of the
EPZ fracture model. As demonstrated by the
model results of Section 5 the predicted macro-
scopic fracture toughness is quite sensitive to the
rate properties of the fracture process, q and _do.
This sensitivity allows us, to some extent, to de-
termine some features, e.g. peak stress and relative
rate sensitivity, of the fracture process based on
macroscopic toughness measurements. More de-
tailed understanding and ®ne tuning of the frac-
ture process parameters is then obtained from
physically based micromechanical models.
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