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Abstract

By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity the
employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these
conventional theories only to alter the tangent moduli governing increments of stress and strain. It is shown that the mo
is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a ne
localization that is at odds with what is expected from a strain gradient theory. The findings raise questions about the
acceptability of this class of strain gradient theories.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Conventional continuum theories of plasticity have no constitutive length scale. Any size-dependence in the rela
between load and deformation depends entirely on geometric dimensions. There is now ample experimental evid
geometric dimensions alone cannot account for observed size-dependence of the plastic response of micron-sized so
Typically, at a scale below tens of microns, but depending on object shape and the type of loading, departures are
which can only be interpreted within the confines of conventional theory as an apparent increase in flow strength. It is g
accepted that this apparent increase in flow strength is due to the generation of geometrically necessary disloca
accompany non-uniform plastic straining. It is argued that micron-scale gradients produce geometrically necessary dis
at a density comparable to that of statistically stored dislocations, thereby increasing the total dislocation density
resistance to plastic flow.

Continuum theories have been proposed recently to extend the validity of conventional plasticity down to roughly the
scale. For a continuum theory to have validity, the number of dislocations within a typical representative volume elemen
sufficiently large such that meaningful averages over the dislocations can be taken, at least in principle. Based on exp
observation of load-deformation responses, the apparent range of applicability of a continuum plasticity theory in most
appears likely to extend upward from the micron, or possibly sub-micron, scale. The limit of any such theory when th
characterizing the deformation field becomes large compared to the constitutive length parameters should be the corr
conventional theory. Continuum strain gradient plasticity theories have been proposed for single crystals (e.g., Gurt
Arsenlis and Parks, 1999; Busso et al., 2000) and as extensions of the classical phenomenological theories of plast
de Borst and Mühlhaus, 1992; Gao et al., 1999; Bassani, 2001; Fleck and Hutchinson, 2001). These theories divide
classes: those with conventional stresses, equilibrium equations and boundary conditions (e.g., Bassani, 2001; Ar
Parks, 1999; Busso et al., 2000); and those having additional stress quantities and additional boundary conditions (e.g
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of the former class is referred to here as a lower order strain gradient theory, while a member of the latter is termed
order gradient theory.

Lower order gradient theories are addressed in the present paper. These theories are intrinsically incremental in n
stresses, incremental equilibrium equations and boundary conditions that are taken to be the same as in conventio
Only the incremental constitutive relation is different from conventional theory. In the rate-independent version of these
which will be considered here, the constitutive relation is altered by incorporating a dependence on the gradient of plas
in the tangent moduli, reflecting the increased flow resistance.

In the course of carrying out a numerical analysis of a basic boundary value problem with one particular versio
lower order gradient theories, it was noticed that some seemingly anomalous behavior emerged in the form of an ine
localization of flow. This lead us to step back and analyze several elementary problems with the aim of more clearly r
the nature of solutions to this class of theories. For the two problems explored here, it will be seen that solutions with an
form of localization occurs that appears to be unphysical in nature. Contrary to a smoothing of steep gradients that is
to follow from the introduction of a gradient theory, the lower order gradient theory promotes the development of certa
of discontinuities. These findings raise issues as to the soundness of this class of theories, which are discussed at the
of the paper.

2. A lower order strain gradient theory

A generalization ofJ2-flow theory proposed by Acharya and Bassani (1996) and Bassani (2001) to account f
effects due to hardening by plastic strain gradients is employed here. This lower order isotropic hardening theory re
the most direct and simplest generalization of classical theory that incorporates size-dependence associated with
length parameter. The version of the formulation introduced below assumes small strains and small rotations. Th
displacement relation is the conventional one,εij = 1

2(ui,j +uj,i ), as are the stresses,σij = σji , and the incremental equation
of equilibrium,σ̇ij,j = 0 (no body forces). Plastic strain gradients are introduced through a positive invariant,α, of the gradient

of the plastic strain tensorεp
ij defined below. The constitutive relations are defined by (see Bassani, 2001)

τe =
√

1

2
sij sij , (1)

τ̇e = h
(
γ

p
e , lα

)
γ̇

p
e , (2)

ε̇
p
ij =

(
γ̇

p
e

2τe

)
sij , (3)

σ̇ij = Cijkl

(
ε̇kl − ε̇

p
kl

)
, (4)

where sij is the stress deviator andτe is the effective shear stress. The effective plastic strain,γ
p
e = ∫ √

2ε̇
p
ij

ε̇
p
ij

, is work

conjugate toτe. The isotropic elastic stiffness tensor isCijkl . The effect of plastic strain gradients are included through Eq.
where it is noted that the incremental hardening modulus,h, depends on the plastic strain gradient measure,α, in addition
to the effective plastic strainγ p

e . The material length parameterl must be included for dimensional consistency. The spe
definition of α used in the present work isα2 = 2αij αij whereαij = ejklε

p
il,k

. The expression forh is taken from Bassan
(2001), and can be written as

h
(
γ

p
e , lα

) = G

n

(
γ

p
e

γ0
+ 1

)1/n−1[
1+ (lα/γ0)2

1+ c(γ
p
e /γ0)2

]1/2
, (5)

whereG is the elastic shear modulus,γ0 is the initial yield strain in shear, andc is an adjustable parameter taken to be unity
the present work. In the limit when the combinationlα/γ0 is small,h reduces to classicalJ2 flow theory with a commonly use
strain hardening relation. Under uniform shearing,γ

p
e /γ0 ≈ (τe/τ0)n as the stress becomes large, withτ0 = Gγ0 as the initial

yield stress in shear. The role of the gradient of plastic strain in (5) is to increase the incremental hardening modulus.
be emphasized that the specific form (5) is not critical to our discussion or qualitative findings, as will be discussed lat

3. Shear of an infinite layer

Consider an infinitely long elastic–plastic layer of the material of Section 2 of thickness 2D bonded to two rigid platen
whose surfaces coincide withx1 = −D and x1 = D, as in Fig. 1 withL = ∞. The platens are displaced parallel to o
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Fig. 1. A slab of material between rigid platens is analyzed under shear deformation. The elastic–plastic solid occupies the region−L � x2 � L

and−D � x1 � D, and the platens are displaced the distance 2U relative to each other in the direction of thex2-axis.

another according tou2 = U on x1 = D andu2 = −U on x1 = −D imposing an average shear strainγ̄ = 2ε̄12 = U/D on
the layer. In the absence of any initial non-uniformity the layer will undergo a uniform shear strain with uniform plastic
across the layer and no gradient of plastic strain. The conventional solution satisfies the field equations even if� is non-zero. To
activate gradient effects, one must consider some initial non-uniformity. For this purpose, the layer is assumed to have
parabolic distribution of plastic strain across the width of the solid withγ p(i)(x1) = γ (i)(1− (x1/D)2). This can be regarde
as a pre-existing, non-uniform dislocation density across the width of the layer withγ (i) � 0 being the magnitude of the initia
plastic strain profile.

When the platens are displaced, the layer undergoes non-uniform shearing where the total strain,γ ≡ 2ε12, elastic strain,
γ e = τ/G (τ ≡ σ12), and plastic strain,γ p = γ −γ e , depend only onx1. One can readily show that the problem for the pla
strain reduces to solving the equationτ̇ = h(γ p, l|γ p

,1|)γ̇ p whereγ
p
,1 is the derivative of the plastic shear strain. Equilibriu

dictates that the shear stress,τ , is uniform throughout the layer, and hence so is the elastic shear strain,γ e.
Two distributions of the initial yield stress,τY , will be considered, although it will be seen that the choice has

effect on the essential outcome. The simplest choice is a uniform distribution,τY = τ0 = Gγ0, taking no account of the
initial plastic strain on initial yield. The other choice accounts for an increase in the initial yield stress due to the
dislocation density through the hardness function. The material is assumed to have reached the initial distribution
strain proportionally such that initial distribution of plastic strain evolves according toγ p(x1) = tγ p(i)(x1) with t being a
parameter increasing from zero to unity. Using this assumption the initial yield stress,τy(x1), can be obtained by integratin
the relationτ̇y (x1) = h(γ p, l|γ p

,1|)γ p(i)(x1)ṫ .
Attention will be limited to initial distributions and solutions that are symmetric with respect to the mid-plane of the

Numerical solutions are obtained through a finite-difference approach, where the half width of the layer, fromx1 = 0 tox1 = D,
is modeled and discretized into 81 nodes. Load integration is performed using a Forward Euler method with load inc
equal to 10−5τ0. A central difference scheme is employed throughout the inner nodes to evaluate the gradient of the
strain. Skew differences, also of second order accuracy, are employed atx1 = 0 andx1 = D. The skew difference atx1 = 0 has
the effect of allowing for a non-smooth development of the plastic strain distribution at this point, which is indeed nece
obtain the correct solution for the problem.

The overall shear stress versus shear strain response is shown in Fig. 2 for the amplitude of the initial plastic strain di
given byγ (i) = γ0 = τ0/G and the associated non-uniform initial yield stress distribution. The curves in the figure corre
to different values of the material length scalel, with n = 5. As expected, an increase inl gives an increase in the predicte
overall stress–strain response. For the curve corresponding tol = 0, profiles of plastic shear strain forx1 between 0 andD are
shown for different values of the overall shear strain in Fig. 3. Since the initial yield stress and the plastic strain are
matched, a constant level of plastic strain develops, and for overall strains aboveγ̄ /γ0 = 1.5 the plastic strain profile is consta
across the entire layer. Before yield occurs across the layer, the derivative of the plastic strain has a discontinuity at th
elastic–plastic boundary. For materials withl > 0 this presents a problem for the finite difference scheme. To circumven
problem, the derivative of the plastic strain is interpolated between values of the derivative at a distance ofl/40 on each side o
the elastic–plastic boundary. Specifically, if the coordinate of the current elastic–plastic boundary is denotedxp , the gradient of
plastic strain is interpolated linearly between the values of the gradient atx1 = xp − l/40 and that atx1 = xp + l/40, for nodes
within the interval[xp − l/40;xp + l/40].

In Figs. 4(a) and 4(b) profiles of the plastic shear strain are shown for various levels of overall deformation,γ̄ /γ0, when
the internal material length scale isl/D = 3. The solid curves correspond to a material where the initial yield stress has
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Fig. 2. Shear stress as a function of shear strain, for different
values of the internal material length scale, andL/D = ∞.

Fig. 3. Development of the plastic strain profile for a conventiona
material, with an initial imperfection of plastic strain, andL/D = ∞.

Fig. 4. The development of the profiles of effective plastic strain, along thex1-axis, for an infinite slab of material(L/D = ∞) with an initial
distribution of plastic strain, and an internal material length scale given byl/D = 3. The solid curves show results for a material where
initial yield stress distribution is matched to the initial plastic strain distribution, while the dashed curves show results for a materia
constant yield stress,τy = τ0, which is independent of the initial plastic strain profile. In figure (a) the profiles of plastic strain are shown
overall deformation level of up tōγ /γ0 = 10, and in figure (b) the profiles are shown for an overall deformation level of up toγ̄ /γ0 = 2.

matched to the initial level of plastic strain as described earlier, while the dashed curves show results for a material w
initial yield stress is assumed to be constant and equal toτ0. The lower curve in each of these figures shows the initial pla
strain profile corresponding to loading below initial yield, while the curves above correspond to an overall shear st
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yield stress at relatively small levels of overall plastic strain is due to the way plastic yielding spreads across the layer. H
the difference becomes insignificant as the overall shear increases.

The essential feature of the solution that emerges in Fig. 4 is the development of a vertex in the plastic strain dis
corresponding to a discontinuous derivative of the plastic strain at the center of the layer atx1 = 0. This unusual form o
shear localization is unexpected because the incorporation of strain gradients is generally expected to smooth pla
distributions. Indeed, the first introduction of a gradient theory of plasticity by Aifantis (1984) was for the purpose of sm
abrupt shear locations leading to finite width shear bands. It has become common practice to employ strain gradient de
as a localization limiter in the analysis of materials prone to localization (e.g., Jirasek and Bazant, 2002).By contrast, the lower
order strain gradient theory appears to promote an unusual form of localization. The occurrence of the plastic strain vertex in
present context is particularly troubling from a physical standpoint because the conventional solution to the shearing
with � = 0 is perfectly smooth. Shear localization is excluded in the small strain formulation for a conventional har
material(h > 0).

The shear problem is sufficiently simple that the reason for the development of the vertex localization is transparent.
the equation governing the plastic strain,τ̇ = h(γ p, l|γ p

,1|)γ̇ p. In the lower order gradient theory, for fixedγ p, h is necessarily

a minimum with respect toγ p
,1 atγ p

,1 = 0, since it is essential to this class of theories that gradients increase the tangent m

This is the case in (5). Moreover, for fixedγ
p
,1, h decreases with increasingγ p. It follows that any smooth distribution ofh with

a local maximum inγ p will have the lowest tangent modulus at the maximum. Becauseτ̇ is uniform, it follows thatγ̇ p must
also be maximum at that point. Moreover, ifγ

p
,1 = 0 were to be maintained at this point, the plastic strain in the vicinity of

point would “run away” becauseh decreases most rapidly at this point. Instead, as seen in Fig. 4, a vertex in the distribu
plastic strain develops at the point with a discontinuity inγ

p
,1. When� �= 0, the combined roles ofγ p andγ

p
,1 allow the balance

required for satisfaction of a constant value ofτ̇ = h(γ p, l|γ p
,1|)γ̇ p to be achieved at the mid-point. The above argumen

quite general suggesting that any hardening relation proposed for this class of lower order theories would lead to ve
localizations given an initial non-uniformity with a region that is locally hard.

The same qualitative reasoning can be applied to a situation where the plastic strain distribution begins with a
minimum such that the material is locally soft at the mid-point. Now, in the absence of any effect ofγ

p
,1, h would have a

maximum at the point anḋγ p a minimum. However, the two contributions to the tangent modulus, from bothγ̇ p andγ
p
,1, no

longer both conspire to depressγ̇ p at the mid-point. Now, they work to opposite effect. Numerical calculations similar to t
described above withγ p(i)(x1) = γ (i)(x1/D)2 indeed revealed that no vertex development occurs atx1 = 0 if the initial plastic
strain distribution has a smooth minimum at the mid-point.

The existence of solutions to the lower order theory such as those in Fig. 4 is related to the findings reported by Vo
Hutchinson (2002) on a similar infinite layer problem in the absence of any initial non-uniformity. These authors have
that the solution to the lower order formulation for the elementary shear problem is not unique for a material with con
tangent modulus at the onset of yield. They produced a family of solutions, including members that are similar to th
emerge in Fig. 4. The existence of multiple solutions to the lower order theory arises from the fact that higher order te
been introduced into the theory without an increase in the number of boundary conditions. In any problem, such as
problem, where initial yield occurs simultaneously over all or part of the body and where the tangent modulus is con
at yield, the emergence of the gradient of plastic strain at the onset of yielding is indeterminate. The initial tangent
is also indeterminate. Multiple solutions are possible depending on how the initial gradient is specified. In the shear
it is possible to specify the initial gradient by requiring that an extra boundary condition be satisfied. Alternatively, an
non-uniformity has the effect of “selecting” one of the many possible solutions. Although we have not attempted to d
would be interesting to conduct a systematic study to relate the initial imperfection to solution selection.

Finally, it should be mentioned that a well-formulated higher order gradient theory of plasticity does not admit m
solutions to problems like the shear problem, nor does it lead to localization. If constraints to plastic flow at the interfa
the platens are not imposed, these theories predict uniform shearing across the layer as in the case of the convention
However, if the additional boundary conditions associated with the theory are used to impose constraints at the plat
uniform plastic flow results. For example, Fleck and Hutchinson (2001) and Bittencourt et al. (2003) model blocked disl
at an interface by an additional boundary condition requiring the plastic strain to vanish at the platens. Even if the layer is
uniform, non-uniform plastic deformation develops due to the boundary constraint.

4. Shear of a finite layer

In the problem analyzed thus far, strain gradients are triggered by an initial non-uniformity. For problems where conv
theory predicts an inhomogeneous plastic strain distribution, due to object shape or to spatial variation of the appli
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theories. A problem of this type will be studied in this section.
A finite slab of elastic–plastic material between to rigid platens is considered as depicted in Fig. 1. The slab has the

2D and the length 2L, and it occupies the region−D � x1 � D and−L � x2 � L. As before, atx1 = ±D displacements
u2 = ±U , respectively, are prescribed with no displacement in the other two directions. The ends of the elastic–pla
at x2 = ±L are traction free. Now, the requirementσ12 = 0 on the ends results in distinctly non-uniform behavior. Ini
non-uniformity is not considered. The problem has a plane strain solution. Letσe = √

3τe andε
p
e = (1/

√
3)γ

p
e . Replace (2) by

σ̇e = h
(
ε

p
e , lα

)
ε̇

p
e , (6)

where instead of (5), let

h
(
ε

p
e , lα

) = E

n

(
ε

p
e

ε0
+ 1

)1/n−1[
1+ (lα/(

√
3ε0))2

1+ c(ε
p
e /ε0)2

]1/2
. (7)

Now, E is Young’s modulus,ν is Poisson’s ratio,ε0 = σy/E is the uniaxial yield strain, andσy is the initial yield stress in
uniaxial tension. (There is a slight difference from the constitutive relation in the last section, but they coincide forν = 1/2.)

Numerical solutions are obtained by use of the Finite Element Method with quadrilateral elements each subdivide
linear displacement triangles. The gradient of the plastic strain tensor is found by assigning nodal values of the plas
tensor as the average of the plastic strain tensors in the elements connected to a node. Then, the gradient is evalua
quadrilateral at the center point by interpolating the components of the plastic strain tensors from the four nodal valu
quadrilateral using bilinear shape functions. This procedure rests on the assumption that the plastic strain field is sm
shown in the previous section, this will not necessarily be true for the gradient dependent solids, even though the initi
strain field is smooth. Load integration is performed using the Forward Euler method.

A slab of material with aspect ratioL/D = 1 is analyzed. The material parameters areε0 = 0.01, ν = 0.3 andn = 5. This
problem corresponds to the shear problem analyzed by Niordson and Hutchinson (2003), within the framework of th
order strain gradient plasticity theory proposed by Fleck and Hutchinson (2001). In Fig. 5 the normalized average
τ̄ /σy , as computed from the lower order gradient theory under consideration here is shown as a function ofγ̄ = U/(Dε0) for
different values of the internal material length scale. The figure illustrates the predicted strengthening effect due to plas
gradients. Forl/D = 0.25 an increase in the average traction of around 7% relative to the conventional response is foun
overall deformationU/(Dε0) = 20, while for l/D = 0.5 the increase is approximately 16%. These results are obtained
20 times 20 quadratic quadrilaterals covering one fourth of the slab, enabled by the double symmetry of the problem.

In Fig. 6 the development of the effective plastic strain profile along thex1-axis is shown. In each sub-figure the profile
the effective plastic strain,εp

e , is shown for five overall deformation levels;U/(Dε0) = 4, 8, 12, 16, and 20. Each row of su
figures shows results for different mesh refinements; the first row shows results for 10 times 10 elements covering o
of the slab, and the second and third row show results for 20 times 20 and 40 times 40 elements, respectively. Eac
shows the development of the effective plastic strain profile for a different value of the internal material length scale no
with respect to the half width of the slab. The first column shows the conventional predictions, while the second a
column show results forl/D = 0.25 andl/D = 0.5, respectively. For a given spatial discretization it is seen from Fig. 6,

Fig. 5. Average shear stress as a function of the overall deformation, for a rectangular slab of material between rigid platens withL/D = 1. The
curves show results for different values of the internal material length scale.
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Fig. 6. Plastic strain profiles along thex1-axis for a rectangular slab(L/D = 1), at different levels of overall deformation. The figure illustra
how the plastic strain profiles are predicted for different values of the internal material length scale, and for different mesh refinemen

the predicted peak value of effective plastic strain along thex1-axis increases with an increasing internal material length s
Furthermore, the peak, which remains quite smooth for the conventional solid, becomes more pronounced as the de
progresses and increasingly narrower the largerl/D. It is evident that a vertex in the plastic strain distribution is develop
for the solids withl/D > 0. The vertex is located along the ridge where the effective plastic strain has a local maxim
the conventional solution. The tangent modulus develops a significant deficit along the ridge for reasons analogous
discussed in the previous section, leading to the vertex localization. We note in passing that the problem for same geo
loading but characterized by a higher order strain gradient theory gives rise to smooth distributions of plastic strain (N
and Hutchinson, 2003).

The evolution of the effective plastic strain profile is rather insensitive to mesh refinement for the conventional mate
l/D = 0. By contrast, the peak value of effective plastic strain increases significantly upon mesh refinement whenl/D = 0.25,
and even more so whenl/D = 0.5. Furthermore, for the most highly refined mesh forl/D = 0.5, it is evident that the plasti
strain profile becomes increasingly non-smooth with increasing deformation. As the vertex develops, the numerical me
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shown, a method specialized to cope with vertex-like behavior would have to be developed, but that is not our objectiv

5. Conclusions

Both examples studied here reveal that vertex-type shear localization develops as deformation proceeds in a
material characterized by a lower order, strain gradient theory of plasticity. In the infinite layer subject to shear, strain g
are triggered by an initial non-uniformity, while in the finite layer gradients are present from the start. The vertex dist
of plastic strain is unusual and it is our belief that it is unlikely to have any physical basis. Indeed, in these example
than smoothing the plastic strain distribution as would normally be expected of a strain gradient theory, the lower order
theory has the opposite effect. A qualitative explanation of the emergence of vertex localization is given for the infini
The vertex develops at locations where the effective plastic strain is a maximum and its gradients vanish.

Although the two problems investigated here are fairly simple, it is unlikely that they are exceptional as far as the b
they reveal. The unusual behavior is a consequence of the mathematical formulation of the lower order gradient theori
face of it, the modification introduced to create the lower order theory would appear to leave the mathematical charac
field equations unchanged. The order of the field equations for the incremental quantities is the same as for convention
However, the strain gradients introduced into the tangent moduli result in terms in the total (or integrated) quantities a
in these equations that are more highly differentiated than any that appear in conventional theory. The presence of th
is directly related to existence of a multiplicity of solutions in problems such as that studied by Volokh and Hutchinson
The present examples provide further evidence that modifying the tangent moduli by a dependence on strain gradie
necessarily a benign process from a mathematical point of view.

In conclusion, it is worth viewing lower order theories in light of strain gradient elasticity theory, which is a simpler s
to envision. If one postulates that the strain energy density of an elastic solid depends on both the strains and gradient
then the resulting theory is inescapably higher order with additional stress quantities and boundary conditions (Mindlin
The lower order gradient plasticity theory retains the order of conventional theory because only the tangent moduli th
in the field equations for the incremental quantities are modified using strain gradients in the current state. Addition
quantities never arise, and, in general, additional boundary conditions for the incremental boundary value problem a
required nor allowed. The seductive simplicity of this lower order modification strategy would not work for elasticity. W
it can be justified from a physical standpoint for plasticity remains an open question. The examples presented here ind
there exist solutions to the lower order formulation that are unexpected and, probably, unphysical.
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