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ABSTRACT 

Crack propagation along one of the interfaces between a thin ductile adhesive layer and the elastic substrates 
it joins is considered. The layer is taken as being elastic-plastic, and the fracture process of the interface is 
modeled by a traction-separation law, characterized by the peak separation stress 6 and the work of 
separation per unit area To. Crack growth resistance curves for mode I loading of the adhesive joint are 
computed, with emphasis on steady-state toughness, as a function of three extrinsic effects : layer thickness, 
layer-substrate modulus mismatch, and initial residual stress in the layer. Conditions under which sepa- 
ration first occurs well ahead of the initial crack tip are discussed. 

1. SPECIFICATION OF THE MODEL 

This paper continues the study begun by Tvergaard and Hutchinson (1994) in which 
an embedded fracture zone model is applied to the mode I fracture of an adhesive 
joint comprised of a thin elastic-plastic metal layer joining two elastic substrates. The 
present work employs the model to investigate the influence on joint toughness of 
both the elastic mismatch between the layer and the substrates and the residual stress 
in the layer. As in the earlier study, the thickness of the ductile layer is another 
extrinsic variable which comes into play. 

The approach adopted was first introduced by Needleman (1987) to study particle 
debonding in metal matrices and subsequently by Tvergaard and Hutchinson (1992, 
1993) to model crack growth resistance in homogeneous solids and along interfaces. 
A traction-separation law simulating the fracture process is embedded within an 
elastic-plastic continuum as a boundary condition along the line extending ahead of 
the crack. In the case of an interface joining dissimilar materials, the separation law 
necessarily involves both the normal and shear tractions and the two associated 
relative displacements of the surfaces across the interface. 
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Ductite lo& ( E.v.*,N) / 

Fig. 1. Geometry of system and traction-separation relation for interface. 

1.1. Traction-separation law for the interface 

Following the notation for the law introduced in Tvergaard and Hutchinson (1993, 
1994) let 6, and 6, be the normal and tangential components of the relative dis- 
placement of the crack faces across the interface in the zone where the fracture 
processes are occurring, as indicated in Fig. 1. Let SC, and SF be critical values of these 
displacement components, and define a single nondimensional separation measure as 

a = J(8”/hcn)2 + (S,/&>’ (1.1) 
such that the tractions drop to zero when A = 1. With o(A) displayed in Fig. 1, a 
potential from which the tractions are derived is defined as 

s 

A 
(D(6,, 6,) = SC, a(X) dA’. (1.2) 

0 

The normal and tangential components of the traction acting on the interface in the 
fracture process zone are given by 

(1.3) 

The traction law under a purely normal separation (6, = 0) is T, = o(A) where A= S,/SC,. 
Under a purely tangential displacement (6, = 0), T, = (&/&)a(l) where A = &/SF. 
The peak normal traction under pure normal separation is ci, and the peak shear 
traction is (&/&)I? in a pure tangential “separation”. The work of separation per unit 
area of interface is given by (1.2) with i = 1. For the separation function o(A) specified 
in Fig. 1, 

l-0 = $?sc,[l -A, +AJ. (1.4) 

The parameters governing the separation law of the interface are the work of the 
fracture process To, the peak stress quantity 6, and the critical displacement ratio 
SC,/&, together with the factors 1, and 1, governing the shape of the separation 
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function. Note that use of the potential ensures that the work of separation is I,, 
regardless of the combination of normal and tangential displacements taking place in 
the process zone. Experience gained in the earlier studies suggests that the details of 
the shape of the separation law are relatively unimportant. The loading in the present 
ductile layer problem is mode I. Nevertheless, the asymmetry introduced by the 
existence of the crack on one interface and not the other gives rise to some tangential 
separation. However, the separation displacements are predominantly normal, such 
that the choice of the ratio Sg/Sf also has relatively little influence on the predictions 
of the macroscopic toughness. The two most important parameters characterizing the 
fracture process in this model are IO and b. 

1.2. Continuum properties of the ductile adhesive and the elastic substrates 

The layer has thickness h and is assumed to be elastically isotropic with Young’s 
modulus E and Poisson’s ratio v. The residual stress state in the unloaded layer is 
assumed to be equibiaxial, acting parallel to the plane of the layer, of magnitude gR. 
Commonly, when a metal layer joins two ceramic substrates, a residual tensile stress 
in the thin metal layer develops due to thermal expansion mismatch and the conse- 
quence of cooling from a high bonding temperature. The plastic response of the layer 
material is characterized by J2 flow theory, i.e. the standard isotropic hardening 
incremental plasticity theory based on the Mises invariant. The tensile curve of true 
stress versus true strain for the layer material is taken to be 

E = a/E for (T 6 fry 

E = (ay/E)(~/~y)“N for cr > c+ 
(1.5) 

where oy is the tensile yield stress and N is the strain hardening exponent. The primary 
effect of the residual stress is its influence on the onset of yield when the joint is 
loaded. 

The two elastic substrates joined by the adhesive layer are assumed to be identical 
and isotropic with Young’s modulus ES and Poisson’s ratio v,. 

1.3. Mode I loading for long cracks and definition of steady-state toughness 

The focus in this paper is on symmetrically loaded joints containing interface cracks 
that are long compared to the extent of the plastic zones induced in the layer. Under 
this condition, the asymptotic problem indicated in Fig. 1 applies, wherein the crack 
is taken to be semi-infinite and is loaded remotely by the symmetric mode I stress 
field with amplitude given by the stress intensity factor K. Irwin’s relation between 
the energy release rate G and the stress intensity factor K for a mode I, plane strain 
crack in an elastic solid is 

G = (l-v,z)Kz 
Es ’ (1.6) 

This relation applies to the asymptotic problem of Fig. 1 with G interpreted as the 
remote, or applied, energy release rate. The crack growth resistance I is identified 
with G under conditions of crack advance. There is one material length quantity, R,,, 
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in the model, which was introduced in the study of mixed mode interface fracture by 
Tvergaard and Hutchinson (1993) 

R. = 
+ (1 -vs’) -’ I-0 ~ - 

ES 1 -T 
CY 

where fi is the second Dundurs elastic mismatch parameter 

(1.7) 

(1.8) 

and p and pS are the shear moduli. In the absence of elastic mismatch (1.7) reduces 
to 

R. = 1 El-0 
3x(1-v2) fJ; . 

(1.9) 

The length quantity & can be thought of as an estimate of the size of the plastic zone 
of the interface crack when I = To and h >> &. 

The model has been used to compute the history of I as a function of crack advance 
Au as dependent on the parameters of the system. From this resistance curve data, 
one can identify a toughness level characterizing initiation of crack growth and an 
asymptote, denoted by IS,, characterizing the steady-state condition wherein the crack 
advances under constant I. Typically, this asymptote is attained after a crack advance 
on the order of several times R,,. The steady-state toughness, I,,, provides the most 
meaningful measure of the joint toughness, and it will be this quantity which will be 
featured in the sequel. The nondimensional relation between the steady-state tough- 
ness and the parameters of the model is 

(1.10) 

There is also a weak dependence on &/SC,, v, vs, a,lE, 1, and A2. Given the large 
number of parameters in the model, it is not possible to present or even compute the 
full parametric dependence. In this paper, attention is directed to the parameters 
shown explicitly in (l.lO), with the exception of N, which is fixed at 0.1 in all the 
computations corresponding to a typical strain hardening level. Each value of I,,/r, 
is obtained by computing the full resistance curve, starting from initiation to a level 
of a crack advance, Aa, such that I approximately attains the asymptote, and, 
consequently, extensive numerical computation lies behind the results reported in 
Section 3. 

2. NUMERICAL METHOD 

The problem considered is an extension of the problem analyzed by Tvergaard and 
Hutchinson (1994), and the numerical method employed is essentially the same as 
that presented in that earlier paper. The method exploits the fact that the plastic 
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deformation takes place only in the thin layer of thickness h, while the solids on either 
side of the layer remain elastic. The region analyzed numerically is divided into three 
sub-regions, where the outer regions comprising the elastic substrates are semi-circular 
with radius &, and region occupied by the layer is rectangular with dimensions h by 
2&. The finite element mesh consists of quadrilaterals, each built up of four triangular, 
linear-displacement elements. The meshes used for the substrate region are identical 
to those employed in the earlier reference. In the layer the quadrilaterals are rec- 
tangular with edge nodes located so that they fit the edge nodes of the adjacent region. 
The initial crack tip is located at x, = x2 = 0, and a uniform mesh region of length B0 
is used in front of the initial crack tip to model crack growth. The length of one 
square element in this uniformly meshed region is denoted by A,,. 

On the circular edges of the substrate regions loads corresponding to the tractions 
of the mode I stress field are applied, with amplitude K. At the two ends of the thin 
layer the edge loads are neglected, which introduces a very small error as long as h/A0 
is small. At the interface between the lower substrate and the layer, the conditions to 
be satisfied are 

U’(?+) = u’(ul-), u2(rl+) = u2(r-) (2.1) 

T’(rl+) = -T’(Yl-1, T2(v+) = -T2h) (2.2) 

where q is the coordinate along the interface and the “ -I- ” denotes a value just above 
the interface and the “-” denotes a value just below. Along the upper interface, the 
initial crack surfaces for x, < 0 are traction-free, while for x, > 0 the displacements 
and tractions are related by the traction separation law of the interface of Section 1.1. 
Thus, for x1 > 0 

u’(xl+)-~l(xI-) = 6*(x,), ~2(x,+)-~z(xI-) = &(x1) (2.3) 

T’(x,+) = - T’(x,_) = T,(x,), P(x, +) = - T2(X,_) = T”(X,). (2.4) 

For the upper substrate region, the linear elastic equations are solved once at the 
start to obtain linear relations between the nodal displacements along x, > 0, the 
corresponding nodal forces, and the load amplitude K, using a Rayleigh-Ritz finite 
element method. Similar linear relations are obtained between nodal displacements 
on the lower interface boundary, the corresponding nodal forces, and the amplitude 
K. In the layer, elastic-plastic deformations take place following a finite strain gen- 
eralization of J2 flow theory, as has been described in more detail in Tvergaard and 
Hutchinson (1992). Thus, solutions in the layer have to be obtained incrementally, 
and in each increment linear relations are obtained between nodal displacement 
increments and the corresponding nodal force increments on the upper and lower 
edges of the layer. 

The relations for the three sub-regions are finally assembled using (2.1)-(2.4) to 
obtain a set of linear algebraic equations for the increment in the load amplitude K 
and the nodal displacement increments along the layer edges. On the initial part of 
the resistance curve, an increment in K is prescribed, but this procedure is unstable 
when K approaches its asymptote. Then, the Rayleigh-Ritz method is used to control 
a monotonic increase of displacement differences at the crack tip. 
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In all of the computations, the properties of the elastic-plastic layer are specified 
by the parameters ay/E = 0.003, v = $ and N = 0.1. Different levels of elastic modulus 
mismatch between the layer and the substrates are considered (Es/E = 1,3,6 and 12), 
all with v, = v = f. The separation law is specified using SC,/& = 1, A, = 0.15 and 
1, = 0.5 with S/o, varied. The preceding paper established that the predictions for 
the present class of problems are not strongly sensitive to SE/&, ;1, or 12*. 

Let A0 denote the length of one of the small elements in the uniform mesh along 
the interface in the crack growth region. Most of the computations have been carried 
out for a region size specified by A,, = 44,000 A0 and B,, = 40 do. Mesh refinements 
have been carried out to test convergence. Based on these trials the computations for 
the elastic mismatches with Es/E = 3, 6 and 12 were performed with A0 = lo&, 
whereas the computations with no modulus mismatch were computed with A,, = 5 
SC,. For the larger values of the layer thickness h, compared to Aa, the mesh size is 
stretched across the layer in such a way that the row of quadrilateral elements along 
the crack plane are square. In each of the semi-circular elastic regions the number of 
triangular elements is 6248 and the number of nodal points is 3203. In the thin elastic- 
plastic layer the number of triangular elements is 8800 and the number of nodal points 
is 4531. 

3. STEADY-STATE TOUGHNESS 

The full set of numerical results for rss/rO as a function of 6/a=, h/b, Es/E and 
aJay are shown in the four parts of Fig. 2. Parts (a)-(d) correspond to values of Es/E 

of 1, 3, 6, and 12, respectively. Figure 2(a) and (c) display results for crR = 0 (the 
solid-line curves), as well as for a biaxial tensile residual stress in the layer nearly at 
yield, cR/crO = 0.95 (the dashed-line curves). The solid-line curves for the case of no 
elastic mismatch in Fig. 2(a) were presented earlier by Tvergaard and Hutchinson 
(1994). 

The main qualitative trends evident in Fig. 2 can be summarized as follows. (i) 
Normalized steady-state toughness increases strongly with &/ay, with all other para- 
meters held fixed. This dependence has been discussed in some detail in the authors’ 
earlier papers on the model. (ii) Very thin layers, in the sense that h/R, -K 1, have 
almost no enhancement of toughness due to plastic deformation, i.e. r,, z To. This 
limit, in which the layer thickness is small compared to the size of the unconstrained 
plastic zone, will be discussed further in Section 4. (iii) At the other limit, when the 
layer thickness is larger than the plastic zone (h/& >> l), l?,,/r, becomes independent 
of h, because the interaction of the plastic zone with substrate on the other side of the 
untracked interface becomes negligible. The value of h/l& at which the toughness 
becomes independent of the layer thickness is a function of b/ay because the plastic 
zone size increases with this parameter. (iv) The ratio of the substrate elastic modulus 
to that of the layer, Es/E, has a fairly significant effect such that joints with relatively 
stiff substrates have higher toughnesses, all other parameters remaining the same. (v) 
The residual stress in the layer crR has a major effect on joint toughness. Tensile residual 
stresses lower the joint toughness, while compressive stresses raise the toughness. 

The influence of Es/E on the normalized steady-state toughness is isolated in Fig. 
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Fig. 2. Normalized steady-state toughness of the joint as a function of layer thickness for various values of 
&/CT,. (a) Es/E = 1, (b) Es/E = 3, (c) Es/E = 6, and (d) Es/E = 12. The other parameters are specified in the 

text. 

3, where curves of r,,/I, as a function of S/cry are plotted for large values of h/R0 

chosen to ensure that the toughness is independent of h. In the range of B/a, for 
which the toughness is magnified above I,, an increase in Es/E leads to an increase in 
I,,/I,. Judging from the results in Fig. 3, it appears that the full effect is achieved 
for modulus mismatches satisfying Es/E > 10. It seems likely that the toughness 
enhancement is related to the ability of stiffer substrates to better shield the layer near 
the tip, thereby lowering the peak normal stress on the interface ahead of the tip. 

A cross-plot of r,,/r, as a function of aR/ay is shown for one set of parameters in 
Fig. 4. The case shown has Es/E = 6, b/a, = 3, with aYIE = 0.003 and N = 0.1. The 
calculations were carried out using h/R,, = 13.46, and thus these results are also in the 
range where the plastic zone does not extend across the layer and the joint toughness 
is independent of h. The role of residual stress is clearly significant. Qualitatively, the 
residual stress effect can be thought of as raising (when aR > 0) or lowering (when 
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Fig. 2. Continued. 

(TR -C 0) the additional effective stress needed to cause yield, thereby suppressing or 
enhancing plastic deformation. To understand this, note that, with respect to plastic 
yielding, a residual biaxial stress OR acting parallel to the plane of the layer is equivalent 
to a uniaxial stress -crR acting normal to the plane of the layer. (This follows from 
superposition of a hydrostatic stress state -o&j, which has no effect on the yield 
condition.) Thus, the onset of plastic yielding at any point in the layer near the tip 
will be delayed (or advanced) to a higher (or lower) local stress normal to the interface 
resulting from the applied K, depending on whether bR > 0 (or CR < 0). The effect is 
roughly equivalent to decreasing or increasing 8. 

In the examples shown in Figs 2-4, the peak interface stress 6 is attained immediately 
ahead of the crack tip such that debonding links back to the crack tip as crack advance 
occurs. The stress distribution in a thin metal layer ahead of the crack tip in the layer- 
substrate geometry considered here has also been studied by Varias et al. (1991) for 
the stationary crack without any debonding. The constraint imposed on the layer by 
the elastic substrates gives rise to a large component of hydrostatic tension in the 
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Fig. 3. Dependence of steady-state toughness of the joint on B/a, for various Ed& all for the limit of large 
h/R,, for which the layer thickness exceeds the height of the plastic zone. 

6 - 

Fig. 4. Effect of residual stress on the steady-state toughness for the limit in which h/R, >> 1. In this example, 
C/a, = 3 and Es/E = 6. 

layer such that the peak in the interface stress occurs at a distance ahead of the tip. 
This is the location where the interface stress first attains 6. If b/o, is sufficiently large 
and if the layer is sufficiently thin, then the peak stress on the interface is attained so 
far ahead of the tip that debonded patches occur which are unconnected to the crack 
tip. An example for which this occurs is shown in Fig. 5 for the case where 6/ay = 5, 
Es/E = 1 and h/R0 = 0.186. The figure displays the deformed mesh and crack opening 
profile at three levels of applied load corresponding to F/I, = 2.06, 2.90, and 3.73. 
At the lowest of the three load levels, the peak stress has just been attained and 
debonding of the interface has begun at a distance of approximately 2h ahead of the 
blunted crack tip. At the two higher load levels, an isolated debonded patch opens 
and expands. Of course, the present calculations are two dimensional, while the actual 
process will be three dimensional. Debonding in roughly equiaxed patches well ahead 
of the crack tip has been observed and documented for Au/A&O, interfaces by 
Reimanis et al. (199 1) and Turner and Evans (1996) and has been studied theoretically 
by He et al. (1996). 

4. APPROXIMATE ANALYSIS OF MODEL FOR LARGE &/oy 

In this section an approximate analysis of the model will be carried out under the 
assumption that b/a, is sufficiently large that interface debonding starts at a point ,C 
at least several layer thicknesses ahead of the tip. Thus, the focus will be on initiation 
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m0=2.06 

Fig. 5. An example illustrating debonding of a patch unconnected to the crack tip at three levels of load. 
For this example, b/a, = 5, &/_I? = 1 and h/h = 0.186. 

of debonding in the regime discussed above where debonding starts in the form of 
isolated patches ahead of the tip. While highly approximate, the analysis does capture 
the qualitative dependencies on some of the most important parameters and informs 
aspects of behavior in the regime where debonding extends back to the tip. 

Assume there is no residual stress in the layer and the layer material is elastic- 
perfectly plastic. When the layer is very thin, the elastic stress distribution for the 
limit of zero layer thickness will be used to estimate the stress acting on the interface 
at the point where the peak stress is attained. That is, from cr 22 = K/s, it follows 
that if R is the value of the stress intensity factor at which debonding starts 

6 = &/5Z. (4.1) 

In the portion of the layer between the tip and the point of initial debonding, i.e. 
0 -=c x, < 2, the xl component of stress increases linearly according to do,,/dx, = 
(2/fi)a,/h. This follows from simple equilibrium and the fact that the layer undergoes 
plastic shearing along its top and bottom surfaces (Hill, 1950; Varias et al., 1991). 
The well-known stress state at the tip of a crack in an elastic-perfectly plastic material 
applies such that, at x1 = 0, (TV, GZ 2~7~. Therefore, at the location of the peak stress, 
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o,, z 2~r~+(2/fi)rr~(~/h). The state of stress at the location of the peak satisfies 
yield and is approximately a state of hydrostatic tension superimposed on a state of 
uniaxial tension, with rrZ2 g c,, +aY. Thus, a second approximate relation between 
the peak debonding stress and the location of the onset of debonding is 

B g 30, + (2/&)a,(~/h). (4.2) 

Eliminate ?Z from (4.1) and (4.2), using (1.6), to obtain the estimate off at which 
the debonding condition is first attained 

r^=&c(l-V,2) J? 2 
(J (5 -3)% 

The location of the point of first debond is 

i J3s -- 
h -() 3 

-2ay . (4.4) 

Note that f does not depend on TO; it is associated with the attainment of a critical 
stress at some point on the interface ahead of the crack tip. Application of the above 
formulas is limited to values of r?/oY sufficiently large such that g/h 3 2, i.e. roughly 
b/ay > 5. Finally, normalize the estimate in (4.3) by To, using (1.7), to obtain 

where 

(4.5) 

(4.6) 

Formulas (4.3) and (4.5) reveal the exceptionally strong dependence on 8/c+, which 
is also evident in the other regime in the plots of steady-state toughness in Fig. 2. 
Note that the trend of r/r,, with Es/E implied by (4.5) is opposite to that for rSS/rO 
in Fig. 3 in the range h/R,, >I 1. Numerical calculations for f;/lY, as a function of Es/E 
in the range of small h/R, with large &lay have not been carried out. 

Finally, a connection is noted between the approximate results for the onset of 
debonding and the numerical results for steady-state toughness in Fig. 2. From the 
plots in Fig. 2, it can be seen that in the range of small h/R0 (e.g. h/R0 < l/2) 

the normalized joint toughness varies approximately linearly with layer thickness 
according to 

or 

rss z r,+c%= r,+3d$$ (4.8) 
0 

(4.7) 
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where C depends on &/av and N but not on I,. In this range, the enhancement of 
joint toughness above the work of separation of the interface is independent of IO, as 
is the case for the result in (4.3). In fact, it can be noted that the enhancement in 
steady-state toughness in (4.8) has precisely the same parametric dependence as (4.3). 
Qualitatively, the trend off with 15 given by (4.3) reflects the trends shown in Fig. 2 
in the range of small h/&. 

ACKNOWLEDGEMENT 

The work of JWH was supported in part by the National Science Foundation under Grants 
MSS-92-02141 and DMR-94-00396 and by the Division of Applied Sciences, Harvard Univer- 
sity. 

REFERENCES 

He, M. Y., Evans, A. G. and Hutchinson, J. W. (1996) Interface cracking phenomena in 
constrained metal layers. Acta Metall. Mater., in press. 

Hill, R. (1950) The Mathematical Theory of Plasticity. Clarendon Press, Oxford. 
Needleman, A. (1987) A continuum model for void nucleation by inclusion debonding. J. Appl. 

Mech. 54, 525-531. 
Reimanis, I. E., Dalgleish, B. J. and Evans, A. G. (1991) The fracture resistance of a model 

metal/ceramic interface. Acta Metall. Mater. 39, 3 133-3 141. 
Turner, M. R. and Evans, A. G. (1996) An experimental study of the mechanisms of crack 

extension along an oxide/metal interface. Acta Metall. Mater., in press. 
Tvergaard, V. and Hutchinson, J. W. (1992) The relation between crack growth resistance and 

fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377-1397. 
Tvergaard, V. and Hutchinson, J. W. (1993) The influence of plasticity on mixed mode interface 

toughness. J. Mech. Phys. Solids 41, 1119-l 135. 
Tvergaard, V. and Hutchinson, J. W. (1994) Toughness of an interface along a thin ductile 

layer joining elastic solids. Phil. Mug. A 70, 641-656. 
Varias, A. G., Suo, Z. and Shih, C. F. (1991) Ductile failure of a constrained metal foil. J. 

Mech. Phys. Soli& 39,963-986. 


