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Abstract. A semi-infinite interface crack between two infinite isotropic elastic layers under general edge loading 
conditions is considered. The problem can be solved analytically except for a single real scalar independent of 
loading, which is then extracted from the numerical solution for one particular loading combination. Two 
applications of the basic solution are made which illustrate its utility: interface cracking driven by residual stress 
in a thin film on a substrate, and an analysis of a test specimen proposed recently for measuring interface 
toughness. 

1. Introduction 

Thin films are susceptible to decohesion from substrates due to their elastic and/or thermal 
mismatch. When load (either mechanical or thermal) is applied to the film, cracks may 
initiate and propagate along the interface or in the substrate approximately paralleling the 
interface [1-4]. The latter case has been considered in [2, 3] and will be further studied 
elsewhere by the present authors [4] using methods similar to those developed here. The aim 
of this paper is to analyze interface cracks between thin films and substrates under fairly 
general loading conditions. The solution can be readily applied to a wide range of problems, 
two of which are given here. 

The mathematical problem which is analyzed is introduced in Fig. la. Each material is 
taken to be isotropic and linearly elastic with material # 1 lying above the interface which 
coincides with the xl-axis and # 2 below. The thickness of the two layers are h and H, 
respectively. A semi-infinite crack lies along the negative xl-axis with the tip at the origin. 
The uncracked bimaterial layer can be regarded as a composite beam with a neutral 
axis lying a distance 6 above the bottom of layer #2 .  The expression for 6 is given in 
Appendix III. The structure is loaded as is shown in Fig. la, where the P's are loads per unit 
thickness and the M's are moments per unit thickness. Overall equilibrium provides two 
constraints among the six load parameters. That is 

P1 - P2 - P3 = 0, 

M 1 - - M 2 q - P I ( ~ - t - H - ( 5 )  = O. 

(1.1) 

Hence only four among the six are independent, say, P1, P3, M1, and M 3. 

Since a22 = 012 = 0 in the layers in Fig. lb, a crack can be created anywhere paralleling 
the interface without disturbing stress distribution. The singular fields for the problem in 
Fig. la are therefore exactly the same as those for the problem in Fig. lc when the problem 
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in Fig. lb is superimposed. This superposition shows that the number of load parameters 
controlling the crack tip singularity can be reduced to only two, P and M, given by 

P = P1 - C I P 3  - C2 M 3  
h '  

M = M I - C 3 M  3 . 

(1.2) 

The C's are dimensionless numbers defined in Appendix III. It is the problem in Fig. lc that 
will be analyzed in Section 2. Once the solution to the problem in Fig. lc is obtained, the 
solution to the problem in Fig. la can be readily constructed by reinterpreting P and M by 
(1.2). 

The general nature of the edge loads of the system in Fig. la makes it possible to 
solve some special problems of practical interest. Two sample problems are considered in 
Section 3 for the purpose of illustration. The first is concerned with residually stressed thin 
films. Figures 2a-d show that, by the "cut and paste" technique, the stress intensity induced 
by residual stress can be simulated by a special combination of edge loads. The second 
sample problem is the four-point bending test specimen (Fig. 3a) recently proposed by 
Charalambides et al. [5] for determining the fracture toughness of bimaterial interfaces. It 
has been slightly extended here to include an independently applied longitudinal load in 
order to assess whether it is feasible to use such a specimen to measure toughness over the 
full range of mixed-mode interface intensity factors. When the crack is long compared to the 
thickness of the top layer but still lying within the central region of the specimen, the 
specimen can be well approximated by the system in Fig. 3b. The latter is simply a special 
loading case of the system in Fig. la. 
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Fig. 2. Cut and paste procedure for constructing solution to interface crack driven by residual stress. 
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Fig. 3. (a) Four-point bend specimen with longitudinal load. (b) Equivalent edge loading. 

2. Energy  re lease-rate  and stress intensity factors  

As observed by Dundurs [7] the elastic moduli dependence of a bimaterial system, with some 
restrictions, may be expressed in terms of two (rather than three) special non-dimensional 
combinations. The Dundurs'  parameters adopted in this paper are defined as 

U(K2 + 1) -- (K1 + 1) 

r(~2 + 1) + (K 1 -~- 1)' 

F(K2 - 1) - (K 1 - -  1) 
(2.1) 

F(K2 + 1) + (K1 + 1)" 
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Subscripts 1 and 2 refer to the two materials in Fig. 1, x = 3-4v for plane strain and 
(3 - v)/(1 + v) for plane stress, F = #1/#2, v is Poisson's ratio, and/~ shear modulus.  The 
physically admissible values of  c~ and fl are restricted to a parallelogram enclosed by ~ = _+ 1 
and c~ - 4fl = _+ 1 in the a, fi-plane, assuming the Poisson ratios do not  take on negative 
values. This will be of  advantage later on when the discussion of  functions that depend on 
material combinat ions is made. 

The linear elasticity singularity solution in the crack tip region can be developed using the 
bimaterial constant  e, defined as 

1 1 - B  
= ~ In 1 +-----fl" (2.2) 

The complex stress intensity factor K - K~ + iK 2 has been introduced, following Rice [6] 
and Hutchinson et al. [8], such that the traction a distance r ahead of  the crack tip is given 
by 

K 
o-22 + io-12 - - - f i ~  (2.3) 

~/2rcr 

where i = x/ - 1, and the crack face displacements a distance r behind the crack tip are 
given by 

c, + c2 K,f~fi~,, (2.4) 
62 + i81 = 2x /~(1  + 2i~)cosh (roe) 

where the compliance parameters are 

~q + 1 tq + 1 
cl - - - ,  c 2 -  (2.5) 

The energy release per unit of  new crack area, in terms of  the complex stress intensity factor 
K, is 

C 1 + C 2 

ff - 16 coshZrce IKI2" (2.6) 

The analysis of  the system in Fig. lc is now taken up. The energy release rate can be 
computed exactly within the context of  plane stress or plane strain by taking the difference 
between the energy stored in the structure per unit length far ahead and far behind the crack 
tip. Calculations for similar problems based on the J-integral can be found in [9]. The result 
is a positive definite quadratic in P and M which can be written as 

(ff = Cl I p2 M 2 PM 1 
1---6 A-h + ) -~  + 2 ~ sin 7 , (2.7) 



In ter face  crack  be tween two elastic layers  5 

where A and I are positive dimensionless numbers and the angle 7 is restricted such that 
171 ~< re/2 for definiteness. These quantities are given by 

1 1 
A = I - 

1 + £(4q + @2 + 3t/3), 12(1 + Zt/3) ' 

s in7 = 6 Z ~ 2 ( 1  + t / ) x / ' ~ ,  Z - c2 _ 1 + c~ _ h 
c I 1 -- ~ '  q H" 

(2.8) 

where 

p2[ p2 M2 PM 1 
IKI= = 7 A-h + + sin y , ( 2 . 9 )  

P = 1 - fi2" (2.10) 

It is interesting to note that IKI depends on fi only through p. 
Arguments  similar to those in [1] and [8] are exploited to determine the real and imaginary 

parts of  the complex stress intensity factor. F rom dimensional considerations and by 
linearity it follows that the complex stress intensity factor K can be written in the form 

where a and-b are dimensionless complex numbers which only depend on the geometric 
parameter  11 and Dundurs '  parameters ~ and fi, but not  on P, M or h. Substitution of  (2.11) 
into (2.9) yields 

la] = 1, Lb] = 1, ~b + ab = 2 sin 7- (2.12) 

The only physically meaningful solution to (2.12) can be written as 

a = e i°~, b = - - i e  i(~°+~), (2.13) 

where the real angular quanti ty co only depends on r/, c~ and fi, and can be chosen in the range 
0 ~< co ~< ~z/2. Thus it is possible to rewrite (2.11) as 

( ~ A h  " ~ / h 3 )  p h-i~ei~'' (2.14) K -  K 1 + i K  2 = ie '~ 

Without  loss of  generality, attention will be restricted to h ~< H or equivalently, 0 ~< r/ ~< 1. 
The magnitude of  the complex stress intensity factor can be obtained readily by comparing 

(2.6) and (2.7). That  is 
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so that the stress intensity factor is fully determined apart from the single dimensionless real 
scalar function O(CI, b, y). 

As suggested in [5, 6, 81, it is sometimes convenient to consider the combination Kh’” in the 
complex plane according to 

I@ = IRle’$, (2.15) 

since IKh’“I = IRI. By (2.14), 

Re [Kh’“] = 5 & cos w + s sin (CL) + y) 1 , 

Im [I@“] z L- ~ ’ Jz & sin 0 - $ cos (w + Y> 
[ 1 . 

The phase angle $ defined in (2.15) is given by 

$ = tan-’ 
[ 

3, sin cr) - cos (w + y) 1 i cos w + sin (~0 + y) ’ 

where A measures the loading combination as 

I Ph A= -- J AA4 

(2.16) 

(2.17) 

(2.18) 

Specific determination of the function ~(a, p, y) requires that the crack problem be 
rigorously solved for one loading case for given LX, /3 and q. This has been done using integral 
equation methods; the details of the solution procedure are given in Appendix I. The 
function W(CI, /?, q) is summarized in Tables 1-4 for various a and fl at q = 0, 0.1, 0.5 and 
1. The dependence of 03 on the three variables is relatively weak. Over the whole of the 
parameters co only varies between about 37” to 65”. For fixed a and p, w varies even less as 
y varies from 0 to 1. Therefore the co vs. q relation for fixed a and p can be well approximated 
by linear interpolation between any two stations of q where values of w are presented in 
Tables 1-4. 

Table 1. ~(a, /I’, 0) (in degrees) 

CI 
\ B 

-0.8 -0.6 - 0.4 -0.2 0.0 0.2 0.4 0.6 0.8 

-0.4 64.4 66.0 
-0.3 60.2 61.3 62.5 63.9 
-0.2 55.5 56.6 51.9 59.3 60.8 62.9 
-0.1 51.0 52.1 53.4 54.9 56.5 58.4 60.9 64.9 

0.0 46.1 47.8 49.0 50.4 52.1 54.1 56.7 60.1 65.7 
0.1 44.6 46.1 47.8 49.8 52.5 56.1 62.0 
0.2 43.4 45.5 48.2 52.1 57.0 
0.3 44.0 47.8 54.9 
0.4 50.3 
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Table 2. co(~, fi, 0.1) (in degrees) 

~ c ~  0.8 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.8 

- 0.4 64.5 65.2 
0.3 59.9 60.5 61.5 64.0 

- 0 . 2  55.2 56.0 56.9 58.1 61.5 63.6 
-0 .1  50.6 51.5 52.5 55.4 57.1 59.1 61.3 64.4 

0.0 46.0 49.0 50.9 52.7 54.6 56.5 58.9 62.0 64.0 
0.1 43.4 44.7 42.3 50.4 53.2 56.5 60.9 
0.2 44.0 46.4 49.1 52.4 57.7 
0.3 44.7 48.4 53.9 
0.4 49.9 

Table 3. oJ(:~, fi, 0.5) (in degrees) 

~ c ~  --0.8 --0.6 - 0 . 4  - 0 . 2  0.0 0.2 0.4 0.6 0.8 

- 0 . 4  6 4 . 1  6 4 . 5  

- 0.3 59.3 59.8 60.6 61.6 
- 0 . 2  53.3 55.2 56.1 57.1 58.4 59.9 
-0 .1  50.0 50.8 51.5 52.8 54.1 55.6 57.5 59.7 

0.0 45.3 46.1 47.2 48.4 49.8 51.4 54.6 56.8 59.2 
0.1 43.0 43.9 45.6 47.3 49.4 51.8 55.2 
0.2 41.2 43.0 45.1 47.8 51.4 
0.3 40.7 43.6 47.4 
0.4 43.2 

Table 4. o~(~, fi, 1) (in degrees) 

fi~:~ - 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0.0 0.2 0.4 0.6 0.8 

- 0.4 63.7 64.6 
- 0 . 3  58.5 59.5 60.8 62.1 
- 0.2 53.7 54.5 55.8 57.2 58.7 60.3 
-0 .1  48.9 49.7 51.0 52.3 53.8 55.4 57.2 59.6 

0.0 44.2 44.9 46.2 47.6 49.1 50.8 52.6 55.0 57.2 
0.1 41.6 42.9 44.4 46.0 47.8 49.8 52.4 
0.2 39.5 41.2 43.0 45.1 47.6 
0.3 38.0 40.1 42.8 
0.4 37.6 

T h e  p r e s e n t  s o l u t i o n  c a n  be  r e l a t ed  to  t w o  specia l  cases  w h o s e  s o l u t i o n s  a re  k n o w n ,  i n  e a c h  

case  for  the  l im i t  o f  a h o m o g e n e o u s  m a t e r i a l  (~ = /~ = 0). W h e n  c~ = /~ = 0, t he  i n t e r f a c e  

i n t e n s i t y  f a c t o r s / £ 1  a n d  K2 r e d u c e  to  the  c lass ica l  m o d e  I a n d  m o d e  I I  f ac to r s , /£1  a n d  K n .  

T h e  case  i n  w h i c h  r/ = 1 c a n  be  so lved  i m m e d i a t e l y  a n d  exac t ly  b y  n o t i n g  t h a t  s y m m e t r y  

r e q u i r e s  K2 = 0 w h e n  P = 0. S p e c i a l i z i n g  (2.16) to  th is  case,  n o t i n g  s in  7 = ~/(3/7) ,  a n d  

e n f o r c i n g  K2 = 0 for  P = 0, o n e  f inds  co = re/2 - 7 = cos  1[x/(3/7)] = 49 .107 ° . O u r  

c o m p u t e d  v a l u e  for  th is  case  is 49 .110  °. T h e  exac t  r e su l t  fo r  t/ = 1 is 

KI = x[SPh -1/2 + 2x /3Mh  -3/2, Kn = 2Ph -'/2 (2.19) 
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The second case is the limit q = 0 given by Thouless et al. [1], also obtained by numerical 
means. In this case (2.16) reduces to 

1 
g i  --  t~ [ P h - I / 2  c o s  co -~- 2,v/3Mh -3/2 sin col, 

~/~ 

1 
[Ph -1/2 sin co - 2x/-3Mh -3/2 cos co], 

(2.20) 

and the co-value extracted from the result in [1] is co = 52.14 °. The present computations 
give co = 52.08 ° for this case, and we believe that the present result is probably the more 
accurate of the two. These comparisons and the additional consistency checks discussed in 
Appendix I suggest the numerical results in the Tables are accurate to within a few tenths 
of a percent. 

3. Sample appfications 

The two problems mentioned in the Introduction are now considered to illustrate the general 
applicability of the basic solution developed in the last section. The procedure for each one 
includes: 

(i) reducing the problem to the system in Fig. 1 a with special loads, 
(ii) calculating the equivalent loads P and M with (1.2), and finally 

(iii) substituting P and M into one of the expressions for the interface stress intensity 
factor, (2.14) or (2.9) and (2.17). 

First consider the residually stressed thin film problem introduced in Fig. 2. Here o -r is the 
uniform tensile "misfit" stress in the film (the upper layer) relative to the substrate. For 
example, for two layers of infinite extent in the Xl and x3 directions which are unstressed and 
bonded at temperature T O and then cooled to T, o -r = 8A~(T -- To)/cl, where A~ is the 
coefficient of thermal expansion of material # 1 minus that of # 2. (Note that o -r is the misfit 
stress and not the residual stress in the film. Only when t/ = 0 are the two the same.) The 
"cut and paste" technique indicates that, as in Fig. 2c, the stress intensity factor of the 
interface crack associated with residual stressing due to o -r is exactly equivalent to that 
induced by the following load and moment combinations in Fig. 1 a: 

P1 = P3 = arh, M3 = a r h ( H - ( 5 + ~ ) ,  M I =  O. (3.1) 

The equivalent loads are calculated using (1.2), i.e., 

where the expression for A - 6/h is given in Appendix III. These equivalent loads can be 
used to determine K for arbitrary values of e,/~ and t/. In the limit when the film is very thin 
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compared to the substrate, t/ --, 0, one finds from (2.14) 

/ h "X1/2 
K=- K 1 + iK 2 = pa r \{~} h-lEe i~(~'~'°). (3.3) 

/ 

As suggested in [11], insight into interfacial crack behavior without the complications 
arising from nonzero e can be obtained by considering material combinations such that 

¢ 0 but/~ = 0, since by (2.2) e vanishes when/? does. For such material combinations 
there is no oscillatory behavior and, moreover, K1 and K2 measure the tensile and shearing 
stress singularities, respectively, on the interface ahead of the crack with the standard 
definition of an intensity factor, as can be seen by (2.3). When/3 = 0, (3.3) reduces to 

Kl + iK2 = ~/1 -- c~ar(h/2)~/2e io(~'°'°l. (3.4) 

The residual stress gives rise to comparable values of K~ and K2 (i.e., tension and shear across 
the interface) since co always lies between about 45 ° and 65 °. Note that a compressive misfit 
stress would give rise to a negative value of K~ according to (3.4). The solution is then 
inadmissible because the crack would not open and contact between crack faces has not been 
considered. 

The second application is the four-point bend specimen recently proposed by Charalambides 
et al. [5] for determining the fracture resistance of bimaterial interfaces (see Fig. 2a). At the 
suggestion of M.F. Ashby (private communication), the role of a load component parallel 
to the specimen has been considered here to assess whether it is possible to generate all 
combinations of K1 and K 2 by varying the relative amounts of the two loads P0 and Q0. As 
is clear from Fig. 3, the stress intensity factors can be computed from the solution to the 
problem in Fig. l a if the following identification is made 

P, = M 1 = O, P3 - -  Qo, M3 - Pol. (3.5) 

Define a magnitude S and phase angle q5 of the loading combination by 

Qo ÷ iPo(l/h) = Se ie. (3.6) 

By (1.2) the equivalent loads P and M are 

P = S(C~cosq5 + Czsin~b), M = ShC3sinqS. (3.7) 

The range of loading is limited to that in which the crack remains open, except for possible 
contact in the immediate vicinity of the crack tip which always occurs if e v a 0. By (2.16), 
Re [Kh i~] >~ 0 if the loading angle ~b is restricted to the range 

- 4 , *  - 4" ,  (3.8) 

where 

tan qS* = C1 cos co[C2 cos co + (A/I)mC3 sin (co + 7)] -1. (3.9) 
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The angle ~ characterizing the relative proportion of the stress intensity factors can 
be calculated in terms of ~b by substituting (3.7) into (2.17). Curves of ~ versus q~ are 
plotted in Fig. 4 for t/ = 1 for various c~, all with fi = 0. As already noted, when fi = 0, 

= tan ~(K2/K1) and the condition that the crack is open is simply/£1 > 0. For 4) ranging 
from about 0 ° to 90 °, ~ varies slowly. Towards the ends of the range of loading combinations 

varies rapidly with q~. The magnitude of the complex stress intensity factor is plotted as 
a function of q~ in Fig. 5. In this plot [KI has been normalized by pam,/h where % is the 
maximum tensile or compressive stress occurring in the lower layer at the center of the 
specimen, calculated assuming the crack length is long compared to h. Notice that in 
Fig. 5 the normalized quantity [Kl/(pam~/h) is exact and independent of ft. The fact that this 
normalized IKI remains robust over essentially the entire range of loading combinations 
suggests that it may be feasible to develop such a specimen. The rapid variation of ~ with 
q~ towards the ends of the loading range will probably require highly accurate control of the 
loads. 

4. Concluding remarks 

The present study has provided the complete solution to the semi-infinite crack lying along 
the interface of two infinite elastic layers subjected to general edge loads. The solution is 
otherwise analytic and exact except for the function co(c~, fi, ~/), which has been calculated 
extensively for the convenience of future application. As indicated by the two practical 
problems, the basic solution may help interpret some important experimental data in the 
further study of thin film and interface phenomena. 
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Appendix I 

In this Appendix we set up and solve the integral equation for the plane elasticity problem 
specified in Fig. lc. A semi-infinite crack lies along the interface of two infinite layers. Each 
material is taken to be isotropic and linearly elastic with material # 1 lying above the xl-axis 
and # 2  below. The thickness of the two layers are h = 1 and H = l/t/, respectively. The 
bottom and top surfaces of the bimaterial layer are traction-free. Edge loads are prescribed 
a s  

P = 1, M = m, M* = m + (1 + 1)1)/2. (AI.1) 
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Let bi(~) be the xi component of an edge dislocation located on the interface at xl 
The stresses at x~ = x on the interface induced by the dislocation are given by 

az2(X) + krlz(X) 
2~({) 
x - ~  + 2rc/3if(x - ~)B(~) + B(~)FI(x  - ~) + B(~)F2(x - ~), 

(A1.2) 

1 + o ~  1 
B(~) = c2(1 _ /32) z~i [b~(~) + ib2(~)], (11.3) 

and the complex-valued functions Fg(~) are constructed in Appendix II. It should be pointed 
out that these functions are well-behaved in the whole range - o o  < ~ < + oo, with 
asymptotes 

, ~ + O as ~ ~ oo. (AI .4 )  

The semi-infinite crack is represented by a distribution of dislocations lying along the 
negative xl-axis such that the traction vanishes along the negative x~-axis. That is, the 
distribution B(~) for ~ < 0 must be governed by 

E 2 1 I°-oo x-----~ + F2(x - ~) /~(~)d~ + I °  Fl (x  - ~)B(~)d~ + 2rq~i/~(x) = 0, 

for x < 0, (AI.5) 

where the first integral is the Cauchy principal value integral. However, (AI.5) is not 
sufficient to determine B(~) unless the asymptotic behaviors at the crack tip and the infinity 
are specified. 

The relative crack face displacements are related to the dislocation distribution by 

~l(X) @ i~2(X) f~ [bl(~ ) -[- ib2(¢)ld¢ xic2 1 - /32 f2 = = B(~)d~, for x < 0. 
l + e  

(11.6) 

The relation between the complex stress intensity factor K and the dislocation distribution 
B can be derived by combining (2.4) and (AI.6). That is 

B(x) 
/~ ___= (27~)3/2 x/1 _ /32 limx~0 (--X) -1/2 i~" (AI.7) 

where i = x/ - 1, 6(x) is the Dirac delta function and 
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The behavior of  B(~) as ~ --* - oo can be specified in the way similar to that in the work 
by Thouless et al. [1]. The results are given below 

Im [B(~)] 

Re [B(~)] 

p2 

8re 
[1 + Er/(4 + 3r/) - 6m(1 - Z ~ 2 ) ] ,  

pa [6Y~t/2( 1 + r/) + 12m(1 + Zr/3)]~ + real constant, 
8re 

as ~ --. - 0 %  

(AI.8) 

where the "real constant"  is not  known a priori. It must be determined as part of  the solution 
to the integral equation. Notice that  with asymptotic behaviors (AI.4) and (AI.8), the 
integrals in (AI.5) are integrable. Since only one loading case needs to be solved, m can be 
chosen such that  Re [B(~)] remains finite as ~ - ,  - oo, i.e., 

621/2(1 + ~/) Q -  
m - 12(1 + Et/3) - ~ sin 7. (AI.9) 

It is believed that (AI.5), (AI.7) and (AI.8) guarantee a unique solution of  B((). 
Make the change of variables 

u - 1  t - 1  
x - - 1  < u < 1, ~ - - 1  < t < 1, (AI.10) 

u + l '  t + l '  

and let ( = x - 4. Then with A(t) - B(~), the integral equation (AI.5) can be reduced to 

d(t) fl_~ u Z t dt + rc~iA(u) + fl_l Fl(~)A(t) + [1 + t + F2(¢)]d(t) dt = O, 
(1 + 0 2 

for - 1  < u < 1, (AI.11) 

Where the first integral is the Cauchy principal value integral. With (AI.7) and (AI.8) in mind, 
A(t) can be approximated by 

[ 1 
1/2 re. 

A(t) = ao + (1 + t) akT~_l(t) , (AI.12) 
k = l  

where ~ (t) is the Chebyshev polynomial of  the first kind of degreej  and the a's are complex 
coefficients which must be determined in the solution process. From (AI.8) 

p 2  

Im [ao] - [1 + Zt/(4 + 3t/) - 6m(1 - Zr/2)], (AI.13) 
8re 

while the real part of  a0, and the real and imaginary parts of ak for k = 1, N are unknown. 
When substituted into (AI. 11), the representation for A leads to an equation of  the form 

N 

[akll(u, k) + fiklz(u, k)] + Re {ao}I3(u ) = I4(u), (AI.14) 
k = l  
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where the terms/j  for j = 1, 4 involve integrals such as 

t ~ " f t  1/2 ie Ii(u, k) = f l l  F,(~)T~_I(t)(1 + t) -I dt. (AI.15) 

These integrals must be evaluated numerically for given values of u and k. 
The solution procedure is as follows. Let a set of 2N real unknowns be Re {a0 } plus the 

real and imaginary parts of ak for k = 1, N, excluding the real part of aN (i.e., effectively, 
Re {aN} is set to zero). This set of  2N unknowns is used to satisfy the real and imaginary 
parts of(AI.14) at NGauss-Legendre points {ui} on the interval - 1 < u < 1. Once the a's 
have been determined, the complex stress intensity factor can be computed, using (AI.7) and 
(AI.12), from 

+ : (AI 6  

The general expression for K in (2.14) applies to the present case with M = m = 
-x/I/A sin 7, P = 1 and h = 1, so that 

K - P ~  cos 7 ei~ei°), (AI.17) 

which yields sin co and cos co independently. The relation sinZco + cos2co = 1 provides a 
consistency check on the accuracy of the solution. The results reported in Tables 1-4 were 
computed with N between 6 and 10. The consistency check was always satisfied to better than 
0.3%. It is believed that the accuracy of co is comparable. 

Appendix II 

The construction of the dislocation solution used as the kernel in the integral equation (AI.5) 
is summarized here. 

The plane elasticity problem is specified in Fig. 6a. An edge dislocation with components 
bl and b2 at the origin lies on the interface of  two bonded elastic layers. The boundaries of 
the bi-material layer are traction-free. The problem is solved by superposing the following 
two solutions. 

(i) Two well bonded half-planes with an edge dislocation at the origin (Fig. 6b), and 
(ii) Two well bonded layers without edge dislocation (Fig. 6c) but with its upper and 

lower boundary tractions prescribed as the negative of o22 + io-12 calculated along x2 = h 
and - H in structure (i). 

The Muskhelishvili potentials for problem (i) are 

1 (AII.1) 1 W(z) /~(1 fl*) - ,  aO(z) = B(1 + fl*)z z 
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b) 

xz x ]  #1 

#2 

+ 

c) 

x2, '~'"i ~'x >trclctlons 

J 

Fig. 6. Conventions for development of kernel function. 

w h e r e z  = x 1 + ix2, fi* = fi for x2 > O a n d - f i f o r x 2  < O,and 

1 -+- c~ 1 
B = c2(1 _ fi2)rci (bl + ib2)" 

The stresses calculated from the potentials are given by 

~F 4xlx~ ] F 2x2 -l- B(1 Jr- fl*)[L r4 +ik r2 
4x l} 
r4 for x2 #= 0, 

and 

~r22(Xl, x2) ~_ il712(Xl, x2 ) ~ [ 2  1 = + 2rcfii6(xl) for x2 = O, 

where cS(x) is the Dirac delta function and r 2 = x~ + x~. 

(AII.2) 

(AII.3) 

(A1 1.4) 
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The solut ion procedure  of  problem (ii) is similar to tha t  developed in [10] for the homo-  
geneous strip. Only the final results are repor ted below. The stresses at  x~ -- ~ along the 
interface o f  the s tructure in Fig. 6c are given by 

0"22(~ , O) + io'12((, O) = BF1(~) + BF2(~), (AII.5) 

where 

Fl(~) = [Q2(ff) - RI(~)I + i[Ql(ff) + R2(~)], 

F2(~) = [Q2(~) + R,(~)] + i[R2(~ ) - Q~(~)], 

where Q's and  R's are defined by Four ie r  integrals 

(AII.6) 

Q~(~) = fo ( - c 1  -- C3) COS ~2d2, R~(ff) 

Q2(ff) = ;? ( -D~ - D3) sin ~2d2, R2(~ ) 

= f? ( - - C  1 + C 2 + C 3 .-4,- C4) sin ~2 d2, 

= fo  (D1 -- D2 -- D3 -- D4) COS ~ d2, 
(1II .7)  

where C's and  D's are solved f rom the linear algebraic equat ions  

Cl D1 

P2 C3 D3 

C4D4 

r X l  Yl 

X2Y: 

X4Y  

(AII.8) 

where 

_ e-;.h _ 2he-;.h _ e;.h _ 2he ~.h ] 

Pl = - e  -;~h (1 - 2h)e -~h e ~h (1 + 2h)C "h J 

P2 

1 × 

I __ e 2H 

_ e 2H 

1 - /3 /3 - ( ~  - /3) /3 

0 1 + /3 - 2 ( ~ -  /3) - c ~ -  /3 

- ( ~  - /3) - / 3  1 - 13 - / 3  

2(7 - /3) -(c~ - /3) 0 1 + /3 

2He;.n _ e-;.n 2He-;J~ 

J (1 + 2 H ) C  n e -;~H (1 - 2 H ) e  -~'H 

(AII.9) 



l 

x 2 -  

X3 

I"4 

Y1 = 

Y2 = 

~ =  

Y4 = 

- [ -  fl - (1 + /3)2h]e -~h, 

- - [ + 1  - (1 + fl)2h]e -)'h, 

= - [ - / 3  + (1 - /~))oHI e-~H, 

- [+1  - (1 - fi)2H]e -;u, 

- [ + 1  + (1 + /3))~h]e ~.h, 

+ [ + f i  - (1 + fi)2h]e -;h, 

- [ + 1  + (1 - /~)2Hle -~u, 

+ [+/~ + (1 - fl)2H]e-;u. 
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The solution to the problem in Fig. 6a is obtained by superposing (AII.4) and (AII.5), i.e., 
for the infinite composite strip, the stresses at ([, 0) induced by the dislocation at the origin 
are given by 

0"22(~ , 0)+ io-12(~ , 0) = B[~+2rc[3i6({)+ F2({)] + BFI(~" ). (AII.IO) 

Appendix III 

The superposition scheme in Figs. l a -c  is outlined here. The neutral axis of the composite 
layers in Figs. la  and b is a distance cS above the bot tom of layer #2 ,  where 6 is given by 

- k = (AIII.1) 
h 2q(1 + Zq) 

The stresses in the composite beam in Fig. lb are 0-22 = 0 " 1 2  = 0 and 

{2 P3 M3 
\/(t~oo+h-5--~oYl' H - c 5  < y < H -  6 + h 

(AIII.2) 
all  (Y) = P3 M3 

~ o  + h-~o y , - a  < y  < H - , ~ ,  

where y is measured from the neutral axis and 

1 
A 0 = - + E ,  t/ 

I0 = ~ { Z I 3 ( A - ~ ) 2 -  3 ( A - ~ )  + 1] + 3 q k - ( A - ~ )  + ~ 3 }  • 

(AIII.3) 
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The equivalent loads P and M in Fig. lc are obtained by superposing the structures in Figs. 
la and b. That  is 

P = P1 - -  (H-6+h JH-a all ( Y )  dy ,  

JH-~ all(Y) y -- H - -  6 + dy. 

Substitution of  (AIII.2) into (AIII.4) gives 

M3 
P = P1 - C1P3 - C2 ~ , M = M 1 - C3M3,  (AIII.5) 

where 

C1 - , C2 - - A + C3 - . (AIII.6) 
A0 I0 ' 1210 

Notice that C's depend on t / and  2 only. 
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R~sum& On consid~re une fissure d'interface semi-infinie entre deux couches infinies +lastiques et isotropes 
soumises fi des conditions g~n~rales de sollicitations sur leurs bords. Le probl~me peut ~tre solutionn6 par vole 
analytique, fi l'exception d'un scalaire r6el simple, ind6pendant de la charge, qui est extrait de la solution 
num6rique relative ~ une combinaison particuli6re des sollicitations. 

On proc~de/t deux applications de la solution de base qui illustrent son utilit& l'une est relative 5. une fissure 
d'interface soumise aux tensions r6siduelles dans un film mince d6pos6 sur un substrat. L'autre est l'analyse d'une 
~prouvette d'essai propos6e r6cemment pour mesurer la t6nacit+ de l'interface. 


