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A semi-infinite crack in an infinite strip of orthotropic material is analyzed. Analytic
expressions for mixed-mode stress intensity factors are derived with only parameter
undetermined, which is then extracted from numerical solutions to integral equations.
The results are relatively simple and complete, and provide the flexibility to simulate

a wide range of practical problems, such as fracture specimens and edge delamination
phenomena of woods and fiber-reinforced composites. As an illustration, specimens
with transverse splitting from notches are analyzed based on the general solution.
The validity of using solutions for an isotropic material to calibrate some testing
geometries of orthotropic materials is discussed.

1 Introduction

Cracks in homogeneous, isotropic brittle materials tend to
grow under mode I conditions. By contrast, cracks are often
trapped, with mixed-mode local field, to geometrically partic-
ular paths such as the fiber direction of woods and uniaxial
fiber reinforced composites, the interface of bimaterial sys-
tems, and the adhesive layer between bonded substrates owing
to anisotropy and/or inhomogeneity in stiffness and tough-
ness. The mixed-mode fracture problem is not only of fun-
damental interest, but also of significant technical importance.
High apparent toughness under tension in the fiber direction
for woods and composites, for example, is largely attributed
to crack splitting, or fiber/matrix debonding (Ashby et al.,
1985; Marshall and Evans, 1985; Budiansky et al., 1986). Ex-
perimental investigations on fracture in woods and composites
appear to be initiated by Wu (1967). Recent efforts in this
direction are found in Ashby et al. (1985), Marshall and Evans
(1985), Prewo (1986), Michalske and Hellmann (1988), and
Sbaizero et al. (1988). Research on analogous situations such
as adhesive joints and bimaterial interfaces, where mixed-mode
fracture is crucial, are found in Liechti and Hanson (1988),
Chai (1988), Argon et al. (1989), and Wang and Suo (1990).
The present work is motivated in part by the intention of using
a four-point bend specimen to conduct fracture tests on fiber-
reinforced composites (Sbaizero et al., 1988).

The basic problem analyzed is introduced in Fig. 1(a). A
semi-infinite crack in an infinite strip of orthotropic material
is considered. More specifically, the strip surfaces are traction-
free and in the direction of a principal axis of the material.
The crack is parallel to these free surfaces, and driven by the
edge loads P; and M, the resultant forces and moments per
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unit width, respectively. The material is taken to be homo-
geneous and linearly elastic. Both plane-stress and plane-strain
deformations will be considered. The analysis provides the
complete solutions for the mixed-mode stress intensity factors.
The body of paper will be devoted to the representation and
application of the major results. Mathematical details are
grouped into three appendices, which may be of some interest
in themselves.

2 Representation of Stress Intensity Factors

For generally anisotropic materials, Hooke’s law can be
written as
6
&= Y 8505 i=1,2,3,4,5,6. o))
j=1
The standard correspondence is adopted, i.c., (&} = {€,, €, €,
Vo Yoo Yoy)Ts {01} = {04, 0y, 04 Tyey Tos Ty} T, and [s;] is
six-by-six symmetric matrix, referred to as the compliance ma-
trix, with 21 independent elements. When the material has an
elastic symmetry plane normal to z-axis, the stress-strain re-
lation for the deformation in the (x, ¥) plane can be reduced
to (see Lekhnitskii, 1963)

&= Y, by, i=1,2,6 v )
=126
where
s;, for plane stress L.
b= i,j=1,2,6. (3

5;;— 5135;3/533, for plane strain

On the other hand, if the material is orthotropic with x and
y-axes coincident with the principal axes of the material, there
are only four independent elastic constants by, by, =b,, by,
and b“, but bm = b26 =0.

For any simply connected domain of orthotropic medium
with traction prescribed on its boundary, the stresses should
only depend on two (rather than three) nondimensional elastic
parameters (see Appendix A)
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Table 1 Values and X and p for some materials

Material 12 p

Al (FCC) 1 0.74
Cu (FCC) 1 0.03
Fe (BCC) 1 0.20
Pb (FCC) 1 0.33
Ash 10.5 1.67
Balsa 21.0 2.13
Oak 2.7 1.16
Pine 14.8 1.10
Graphite/Epoxy 9.5 3.34
GY70/Epoxy 42.0 3.36
Boron/Epoxy 14.3 4.91
Graphite/Al 5.0 1.12

by _2bi+ be

P )
by

Wby

These parameters measure the anisotropy in the sense that A=1
as the material symmetry degenerates to be transversely cubic
and A=p=1 as the material becomes transversely isotropic.
The positive definiteness of the strain energy density requires
that A>0 and p> — 1. Many nondimensional parameters for
orthotropic materials other than those in equation (4) have
been used in the literature, but none of them have offered the
unique feature discussed in Appendix A. In Table 1, the plane-
stress values of A and p are listed for some single crystals,
woods, and composites (no dramatic differences have been
found for the corresponding plane-strain values). It appears
from this list that p is typically somewhere in the range from
0 to 5, while A can be significantly greater or less than 1.

The elastic stress field at the crack tip for generally aniso-
tropic body has a square root singularity. Accordingly, stress
intensity factors, K; and K;;, can be defined such that the stress
at a distance r ahead of the crack tip are given asymptotically
by

LY K

A/ 21rr’ o \ 2wr -

For a crack in an orthotropic body, lying in a principal plane
and with its front in a principal direction, the relative crack
face displacements at a distance r behind the crack tip are

®)

Oyy

r

6y=8b11)\73/4n K] 271"

8,=8by N n Ky 2_;, ©)

where the frequently encountered constant » is defined by
1+p
= —_— . 7
n 2 Y

The energy release rate, derived from equations (5) and (6), is
related to the stress intensity factors by

G=b n(\ K3+ NTV4KE)). ®)
These results are contained in the work by Sih, Paris, and
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Fig. 1 Conventions and the superposition scheme

Irwin (1965). The present normalization is related to theirs by
K,=<wk,, K;;=~/nk,. Rearrangements have been made using
the two anisotropy measures identified previously to suit our
purpose. )

The analysis of the problem in Fig. 1(a) is now taken up.
The aim is to solve for K; and K, as functions of the loads
P’s and M’s, geometry specifications 4 and H, and anisotropy
measures A and p. Overall equilibrium provides two constraints
among the six loads P; and M,. Therefore, only four of them
are independent, say P, P;, M|, and M,. Superposition of the
systems in Fig. 1(a) and 1(b) gives that in Fig. 1(c), with P and
M given by

P=P1_C|P3—C2M3/h

M=M,-CM, o)
1 6/7 1 h

C = , Cy= , Cy= =

S+l P ame)? P am+ )y T H

Since no stress singularity is present in the beam in Fig. 1(b),
the stress intensity factors must be identical for both systems
in Figs. 1(a) and 1(c). We will concentrate on the reduced
problem in Fig. 1(c). Once the latter problem is solved, the
solution to the general problem in Fig. 1(a) can be constructed
by the above relations.

The energy release rate for the system in Fig. 1(c) can be
computed exactly by using the energy stored in the structure
per unit width per unit length far behind the crack tip (e.g.,
Rice, 1968). The result is a positive definite quadratic in P and
M which can be written as

—ﬂ[£+—1‘£+2—£-——sin ] (10)
T2 lanT T e
The geometric factors are given by
1 1 i
S 16+ 3, 5= 120+, MY (1 +m)  (11)
1

where the angle v is restricted to |yl <«/2 for definiteness.
Without loss of generality, attention will be restricted to A< H,
or equivalently, 0<yp=<1. The energy release rate given by
equations (10) and (11) is valid even if the material is generally
anisotropic.

As shown in Appendix A, for the problem in Figs. 1(a) and
1(c), the combinations A™%8K; and A~3K}; are independent
of . It will be obvious immediately that this fact simplifies

Transactions of the ASME



Table 2 «(, p) (in degrees)

p
ul -5 0 1 2 3 4
0 51.0 51.7 52.1 52.2 52.2 523
0.5 50.4 50.4. 50.9 S51.1 51.1 51.7
1 49.1 49.1 49.1 49.1 49.1 49.1

the problem significantly. Equating the two energy release rate
expressions (8) and (10), one can verify

L — P te”
N2 Wha K1
where i=+ — 1 and lal stands for the magnitude of a complex
number a. Equation (12) states that two complex quantities
have the same magnitude. Consequently, they can differ only

by a phase angle shift, designated as w, namely,

v  p o~ M
N33+ N VK ) == —ie? ) )
(\/; it n \/5\/;1; ¢ \/;13—1

On dimensional grounds, » should be nondimensional function
of nondimensional quantities Ph/M, n, N\, and p. However,
by linearity, w should not depend on Ph/M; nor should it
depend on A, since both sides of equation (13) are independent
of \. Therefore, the angle w depends on 5 and p only, i.e.,

NI YEK,+ N VBK | = (12)

w=w(7, p). (14)
Rewrite equation (13) more explicitly as
NET P M
Ki=——= [——cosw +———=sin(w + 7)}
2n L\ ha NI as)
)\1/8 P M
K” = [ inw— \,OS((.O + 'Y):l
N 2nt\/ hA Ny

so that the stress intensity factors are fully determined apart
from the single dimensionless real function w(y, p). From equa-
tion (15) one can restrict w in the range 0 <w< /2 to recover
the positive signs of K; and K,; anticipated for the special case
P>0 but M=0.

Specific determination of the function w(y, p) requires that
the crack problem in Fig. 1(c) be solved rigorously for a given
pair (9, p), for an arbitrary set of values of \, h, P, and M.
We will show next that w is around 50 deg. Some early works
on partitioning mixed-mode stress intensity factors from the
energy release rate were based on unjustified symmetry ar-
guments and contains significant errors (e.g., Tadaet al., 1985,
pp. 29.2, 29.4, 29.9 and Williams, 1988, Fig. 10(a)). In the
following, an exact solution for w is found for the case h=H,
or n=1. Numerical solutions are presented for other cases,
and a simple estimate is given for practical applications.

() w(1, p). Exact solution can be obtained for this case
by considering a special loading P=0, M =1. The geometric
factors in equations (9) and (11) for =1 are

Lol e 2
T T T g
(16)
1 3 1
C|=£, CZ—Z, C3—§.

Notice that K;;=0 due to the symmetry, which, when substi-
tuted into equation (15), gives cos (w+7v)=0. Thus,
w=cos~ W(3/7)=49.1 deg. It is revealing that w(1, p) does not
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Fig.2 Transverse splitting from notches; (a) four-point bend specimen,
(b) equivalent bend moment, (c) delamination specimen, and (d) equiv-
alent load for the delamination specimen

depend on p. This indicates that the function w(y, p) may vary
weakly with p even if n=1.

(i) w(y,1). This caseis equivalent to the isotropic version
of the same problem, which has been solved by Suo and Hutch-
inson (1988a, b). For 0<% <1, an excellent approximation is

w=52.1-3n, a7

(i) w(y, p). Anintegral equation is formulated and solved
numerically in Appendix B for the general case. The extracted
values of w are listed in Table 2. One notes immediately that
w is a very weak function of p. This implies that equation (17)
is an adequate estimate for a wide range of p for 0=n=<1.

in degrees.

3 Fracture Specimens

3.1 A Four-Point Bend Specimen. The specimen illus-
trated in Fig. 2(a) is considered first. The beam is cut from an
orthotropic material, with its principal axes coincident with
the material principal axes. When the crack is long compared
with A, but still lying within the central region of the specimen,
the specimen can be well approximated by the system in Fig.
2(b). It has been shown by finite element calculations (Char-
alambides et al., 1989) for an analogous specimen that the
crack-tip field is indifferent to the crack length if it is suffi-
ciently long. Consequently, the structure in Fig. 2(b) can be
imagined to be infinitely long in the crack direction. This falls
into the class of the problems (Fig. 2(a)) analyzed in the pre-
vious section, with the special loading combination

P =M =P;=0, M;= - M,. (18)

The equivalent loads controlling the singular field are calcu-
lated from equation (9), i.e.,

P= CzMo/h, M= C3M0. (19)

The stress intensity factors are obtained when the above are
substituted into equation (15), that is
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)\3/8
K;=——=Moh *[CA~"*cosw + C;I = *sin(w + )]

\/2n

1/8

A Moh ™32 [CrA ~V2sinw — CiI ™ ?cos(w + v)]
\2n
where w can be approximated by equation (17). For the special
case h=H, or n=1, w+y=n/2, cosw=(3/7), sinw=(4/7),
with various geometric factors given in equation (16), equation
(20) can be specialized to

(20)

K=

K,=\/3)\3/8n‘ 1/2M0h_3/2, K”=%)\I/8n— l/ZMOh—B/Z‘ (21)

This is an exact solution. Notice that from equation (21),
Ky_/3
K, 2

Equation (21a) indicates that mode I and mode II stress in-
tensity factors are comparable for this test arrangement.

A4 (la)

3.2 A Tensile Specimen. Parallel results for the same ge-
ometry under tension (Fig. 2(c), (d)) are listed as follows. The
stress intensity factors are given by

3/8

NEE
)\1/8

KII=\/_T2=Q
n

where, for an arbitrary value of n=h/H, C, and A are defined
in equations (9) and (11), and w can be approximated by equa-
tion (17). The solution for the case h=H, or n=1, is exact,
which is

K= Oh~'2C A~ *cosw

22

h~12C.A™Visinw

3
Klzg)\}/sn_ l/Zh- 1/2Q9 K": )\l/Zn— l/lh— 1/2Q, (23)

thereby the ratio K;/K,, for the case &= H, is given by

Ki_ 2, s

23
K \/3 (23a)

Again, there is a comparable amount of stress intensity of the
two modes.

3.3 More Specimens. Illustrated in Fig. 3 are geometries
utilized predominantly in composite and wood fracture testing.
The specimens are cut from bulk materials with principal ma-
terial axes aligned with specimen axes. A common feature for
all these specimens is that no specific length scale is involved
in one direction. With such specimens, it has generally been
the practice to use the stress intensity factors determined for
the corresponding isotropic specimens (e.g., Ashby et al., 1985,
Michalske and Hellmann, 1988). This can be easily justified
as follows: The stress intensity factors, in general, depend
on the two anisotropy measures, \ and p. Exploiting the re-
scaling technique outlined in Appendix A one can confirm
that, for all configurations in Fig. 3, the stress intensity factors
are independent of \. Given the fact that p is typically in the
range between 0 and 5, and that the solutions for analogous
problems only weakly depend on p, one can reasonably expect
that the stress intensity factors are almost independent of p.
Consequently, the stress intensity factors for these geometries
are nearly independent of any anisotropic factors, and thus
the use of solutions for isotropic materials should be appro-
priate. Evidently unaware of the roles played by A and p,
Sweeny (1988) carried out a numerical analysis for an edge
crack in an orthotropic half plane (Fig. 3(a)). The Table 1 in
his paper can be reduced concisely as

K;=Yo\/ma, Y=1.12-0.011(p - 1),

for 1<p<8. (24)
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Fig. 3 Several conventional fracture specimens

The rescaling concepts have been extended to tackle speci-
mens of finite geometries. Insights thus gained and a user-
friendly catalog of most commonly used orthotropic specimens
are reported in Suo et al. (1990) and Bao et al. (1990).

4 Extension to an Anisotropic Strip

Arguments leading to the stress intensity factor expression
(15) have been used successfully in various contexts by Thouless
et al. (1987), Hutchinson et al. (1988), Drory et al. (1988), and
Suo and Hutchinson (1989a,b,c). The generality may be ap-
preciated by considering the problem with the same configu-
ration as Fig. 1(c), but with a generally anisotropic material
replacing the orthotropic material considered earlier. The Sih-
Paris-Irwin energy release rate expression can be rearranged
as

G = b“ (nlx‘3/4K% + nz)\_l/4K%]

A" V2K K siny). (25)

Here, n,, n,, and » can be extracted from the work by Sih et
al. (1965) as

+2

1 1 1
ny = —Elm[t(’ +51, n2=51m[t1+t2], 2V, nlnzsinv=51m[t1t2]

(26)
and ¢, and 1, are roots with positive imaginary parts of

A —2p,P+2p =20t +1=0 @7

where p, and p, are defined in Appendix A. Comparing equa-
tion (25) with equation (10) one obtains

N N K 4+ e N T VBK

M | 28)
1534

e
N2 W ha

where 4 and [ are defined by equation (11). Again one can
introduce a phase angle shift w=w(n, p, p;, p2), such that

\/n_l)\‘3/8K,+ie‘i”\/n72)\"1/8K,,
(i)
N N

Consequently, the stress intensity factors K; and Kj; are fully
determined apart from the function w. One may anticipate the

(29)
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approximation equation (17) to be valid for wide ranges of p,
p1, and p,.

It is not a very difficult exercise to derive a formula anal-
ogous to equation (26) for an interface crack between two
layers of dissimilar anisotropic materials, so that such inter-
esting problems as bicrystal specimens (e.g., Wang, 1988) and
interlaminar fracture in composites can be addressed. Helpful
hints may be found in Suo and Hutchinson (1990). The cor-
responding relation between energy release rate and stress in-
tensity factors can be found in Suo (1990).
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APPENDIX A

Orthotropy Rescaling
Let U(x, y) by the Airy stress function, namely,
*U U U
OX:W, uy=$2-, Ty = —@.
The differential equation of U(x, y) for rectilinearly aniso-

tropic materials is obtained from the compatibility equation
(cf. Lekhnitskii, 1963)
*U ‘U *U *U 3*U

_2”2)‘”4W+2 N aar N gt g =0

(AD)

(A2)

where N\ and p are defmed in the body of the paper and
P14 =16/ by, p2N4 = bye/byy. Now it is obvious that for any
simply connected domain of anisotropic medium with traction
prescribed on its boundary, the stresses should only depend
on four (rather than five) nondimensional elastic parameters.
If the material is orthotropic with the principal axes in the x
and y-directions, p,=p, =0, the stresses should only depend
on two parameters A and p. Moreover, for the problem in Fig.
2(a) with no specific length scale in x-direction, we are able to
show explicitly the way in which stress intensity factors depend
on A. Rescale the x-axis by

£=2N"% (A3)

The boundary value problem in Fig. 2(q) is then governed by
the following differential equation

4 4 4 4 4
%—szazgyﬂpagz;; 2’)'628(; ‘; =0 (A4)
and boundary conditions on (£, y) plane
FU - FU . ,
ay8£ , W=prescnbed traction, §— + o, —H<y<h
(A5)
2
ZTLZ/ :;a =0, £<0, y=0; —o<fi<o, y=—H, h.

Clearly, U(§, y) will not depend explicitly on A. This has very
strong implications as the stress intensity factors K, and K,
are calculated

2
K ,—llm\/ 2mxa,(x, 0) =N 811m V2w 6 FUE 0

352

2
K”= lim \Y/ 27TXTX),(X, 0) = - )\1/81im V Zﬂé%’ﬂ (A7)
x—0 £-0

so that the combinations A ~33K; and A\~ !/®K, are independent
of A.

(A6)

APPENDIX B

Integral Equation Formulation

An integral equation for the plane elasticity problem of Fig.
2(c) is formulated based on the dislocation solutions developed
in Appendix C. Since only the function w(y, p) is to be extracted
from the numerical solution, one can take

A=1,h=1, P=1, b, =1, (B1)

and M will be specified shortly to simplify the numerical anal-
ysis.
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Fig. 4 An edge dislocation in an infinite strip of cubic material

The semi-infinite crack is simulated by an array of contin-
uously distributed edge dislocations along the negative X-axis,
with components b.(£) at x=¢%. The traction-free condition
along the crack faces results in the integral equations

0 0

2B,(£) .,
[ 2001 | Futr0iButer
=0, for —o<x<0 (B2)
where the first integral is in the Cauchy principal value sense,
and the convention of summing up a repeated Greek suffix is
adopted. Here,
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The kernel functions Fg({) are given in Appendix C; they are
well behaved in the whole range —®< ¢< + oo, with asymp-
totes

1
B, (§)= g;r;ba(é), n= (B3)
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Faﬁ(;‘) = —'_61119 + o (—) as I’—' e, (B4)
¢ e
Noticing that by definition the Burgers vector, b, is related
to the crack face relative displacement, 8, by

ad
ba(x)= —a—x_.ba(x), (BS)

one can verify the following asymptotic behaviors for B,(§)

K K
Bi(£)= (h)‘”T’—’—, By(§)= (2w)-“7—’— (B6)

as £—07, and

1
Bi(§)=g -l +n(4+3n)—6M(1—7?)], By(§) =constant

I
Asm'y (B7)
as §— — oo, where M has been chosen such that B,(— ) re-
mains finite. And K, Kj; and the “constant’’ in (B7) are not
known a priori, but must be determined as part of the solution
to the integral equations. The integral equations, together with
the specified asymptotes, constitute a well-posed mathematical
problem for the unknown distributions By(£). The details of
the numerical solution procedure for analogous problems can
be found in Thouless et al. (1987), and Suo and Hutchinson
(1989a).

Once the B,(%) are obtained for a given pair 9 and p, the
stress intensity factors are evaluated from equation (B6). The
function w(y, p) is then extracted by specializing equation (13)
with (B1), (B7) to

M=-

cosy

K1+ iK”=——— (w+7).
W 2nA

The numerical solution yields both K; and K;; and each results
in a value of w. This provides a consistency check on the
accuracy of the solution. For example, knowing K; and K,
one can calculate cos (w+ ) and sin (w+ %) independently from
equation (B8), and hence the check can be chosen as
[cos¥(w +7) + sin*(w + v)]'/2 - 1. The results reported in Table

(B8)
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2 were computed with the consistency check satisfied to better
than 0.1 percent. It is believed that the accuracy of w is com-
parable.

APPENDIX C

An Edge Dislocation in Anisotropic Structures

In Appendix B, the solution of an edge dislocation embedded
in a strip of cubic material (Fig. 4) is used as the kernel of the
integral equation. This solution, together with analytic solu-
tions to a dislocation in an infinite and semi-infinite space of
generally anisotropic material, is constructed in this Appendix.

It has been shown in Lekhnitskii (1963) that the problems
of plane anistropic elasticity can be conveniently formulated
in terms of two analytic functions, ¢1(z)) and ¢2(z2) with two
complex variables, z;=X+ . The parameters p; and p, are
solved from the algebraic equation

byt = 2bgn’ + (2012 + beg) 2 — 2byeu + by =0.  (C1)

The roots of equation (1) can never be real, and thus they
oceur in conjugate pairs. Here g, and p; are chosen to be the
ones with positive imaginary parts. The stresses, resultant forces
on an arc and displacements are given by

o, =2Re[p30{ (z)) + 1393 (22)]
0,=2Re[¢; (21) + ¢3 (22)]

Tyy= — 2Re[{ (@) + pa$3 (22)]

f.=2Re[p61(21) + 1292(22)] ((67))]

fy= —2Re[¢(z)) + $2(22)]
u,=2Re[p,$(zy) + D2$2(22)]

u,=2Relg:¢ (z) + 4202(2)]
where Re[ ] signifies the real part of a complex quantity, and

pi= byl + by — b 4= byy/pi+ bupi— by (CI)

(i) An Isolated Dislocation in an Infinite Body

The potentials for an edge dislocation with Burgers vector
b, and b, at the point (X, ¥o) in an infinite body are of the
form

6,0(2) = Wiln(z—s)), 5;=Xo + kYo (2)
where the suffix 0 attached to the potentials indicates that the
solution is for an infinite body. The complex constants W,
and W, are determined from

Im{W, + W51=0

Im[p, W, + W2l =0

Im[d W, + W, = — b/ (4wby)
Im[W,/p, + Wa/pal = — b,/ (4ba) (C5)

where Im[ ] represents the imaginary part of a quantity. For
the special case that the material is cubic with the principal
axes along the x and y-axes, equation (C5) yields

1 1
Wi=—0" [-B,+B,/ml, W2='—'__[Bx—3y/uz]
[ B~ M2
b
B,=—>.
8wnb,, (€6)
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Specializing equation (C1) to a cubic material (b;s=by=0,
by, = by) gives

w=i(n+m), yy=i(n—m), forl<p<oo

w=in+m, for —1<p<1 (o))

#2=in_ma

The degenerate value p =1 (corresponding to isotropic mate-
rials) can be treated as the limiting case. With the dislocation
at the origin, i.e., xo=y,=0, the stresses are

1
OgB(xa y) =fa;‘3‘yB-y’ fa&/:;[gaﬂ'y(m) _gaﬁ‘y( - m)] (C8)

where
3 +
gi(m)= —Q}-t,;i)‘l, gnz(m)=g|21(m)=g"’2m_)x
/ n+m
ga(m) = -2 g (my =gt =T ()
P=x+ (n+m)*?
for p>1, and
- +
gm(m)=%, guz(m)=gm(m)=%
ga(m) =", gy (m) =i (m) = =57 (C10)

r= (x+my)*+ (ny)?
for —~1<p<l.

(ii) A Dislocation in Half Space

For a line singularity, such as a dislocation and line force,
in generally anisotropic half space with traction-free boundary
y =0, it has been shown by Suo (1990) that the potentials can
be constructed with the solutions for the same singularity in
an infinite body, namely,

1 .- -
61(2) = $10(2) +m[(l»‘2— K1) B10(2) + (1 — p2) $20(2)]
1
(C11)
1
Hy— B2

[(y ‘#1)‘510(1)4' (2~ ll-l)q;zo(z)]-

62(2) = P20(2) +

(iii) A Dislocation in an Infinite Layer

A superposition scheme is used here to construct the solution
for an edge dislocation embedded in an infinite strip (Fig. 4).
Attention will be confined to cubic materials with a principal
axis along the direction of the strip. A solution without sin-
gularity in the strip, which is represented by the Airy stress
function U(x, y) in Appendix A, is superposed onto the so-
lution to an edge dislocation in an infinite body to nullify the
traction on the strip boundaries. The following conventions
of the Fourier-cos and -sin transforms for even and odd func-
tions, respectively, will be adopted

f(x)=5o f(O)cosOde,f(0)=Z§O f(x)cosfx dx
™
(C12)

+

g0 - |,

+

2
£(0)sinfx db, £(0) 2;50 g(x)sinfx dx.

Owing to the symmetry of the configuration, the stress function
can be expressed by the Fourier integrals
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sinfx
7 (C13)

+By50 (0.8, »)17(Ci(6))

where (s are solved from

(C14)

o — 23—2—3—4—00 =0
2p03y2+ay,, (6, »)=0.

The solutions are
(00, »)7=
{e(n+m)y0’ e(nAm)yo’ e(—n—mw, e(—n+m),v0)' p>1
{&%sin(my8), e™’cos(myb), e~ "sin(my8), e Pcos(myb)},
-l<p<l

(e, y8e’, e %0, e %}, p=1 (C15)
The stresses are derived from equation (Al).
0%, )= — BXSO {0:(6, y)}7{A,(60) Jcosbxdo
(Cl6a)
- Bygo (Ti(6, »17(Ci(6) }sinfixdd
and .
TolX, Y) = + BXSO {8U;(6, y)/3y}T(A;(0) }sinbxdb
(C16b)

- Bygo {30,(8, y)/3y}T( C;(8) }cosfxd.

The coefficients A’s and C’s are used to satisfy the strip bound-
ary conditions. Written in the Fourier transform variables,
these conditions become

{U(h))7 A, G
(0U;(h)/3y}™ A, G|
(0:(-H))7 46 |
(80, (- H)/9y}" As Gy
fZZI(h) fZZZ(h)
~fin(h)  fin(h)

C17
Jon (= H) fi(—H)

~fin(=H) fin(—H)

where the Fourier transforms of the functions defined in equa-
tions (C8)-(C10) are

fizn (}’)=$[(n+m)e‘"'*"”'Y”’_(,,_m)e~<nvm)|y|e]

e-(n+m)|yl0+______e—(n—m)ly10] (C18)

n—-m

1
fzzz()’)=;n‘[ -

n+m
sgn

Fon () '—“flzz(y):gT(y)[e_("+m)'yw—6’_("_m)|yw]

for p>1, and

Sa)= 2[C08(my0) - niiﬂ(_':_:)ﬁ]e—mylo

M}e’"uw (C19)

fona(y) =2 [ cos(myB) +n

i 0
Fa ) =finy)=- 2[8"1(%)]8_"”"0
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for —1<p< 1. The dependence on @ has not been noted ex-
plicitly.

In the integral equation formulation in Appendix B, the
stresses at x induced by the dislocation at x=0 are desired
along the line parallel to the strip boundaries with the dislo-
cation on it. They can be written in the form

2B,
G20 (X) =—x—+Fa3 (x)Bg (C20)

where F’s are to be evaluated numerically using the Fourier
integrals equation (C16) letting ¥ =0. However, for the half

plane problem, i.e, H— o, analytic expressions are obtained
from equation (C11). The results are

2
Fog= (%) [Dog(m) + Dog(—m) —2De(0)/ 1), =4

(C21)

2
Fog= (ﬁ) (Do () + Do (— m) — 2Dos(0)], a5

where
+ p—
Dy (m= -, ppy(my= - I,
(C22)
Dyy(m) = — Dy, (m) = —3%”1", P=x*+ (n+m)h
for p>1, and
—4mh
Dy (m)=3, Dy (m) ="~
- (C23)

Dy, (m)= — D, (m)==, P=(x+2mh)*+ (2nh)?

=
for —1<p<l1.
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