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Abstract—For most practically important plane elasticity problems of orthotropic materials, stresses
depend on elastic constants through two nondimensional combinations. A spatial rescaling has
been found to reduce the orthotropic problems to equivalent problems in materials with cubic
symmetry. The latter, under favorable conditions, may be approximated by isotropic materials.
Consequently, solutions for orthotropic materials can be constructed approximately from isotropic
material solutions or rigorously from cubic ones. The concept is developed to gain insight into the
interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a
variety of technical problems to be addressed efficiently. Included are stress concentration related
cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture
planes, and surface flaw induced delamination.

I. INTRODUCTION

Various advanced composite material concepts have been explored in recent years. Com-
posites are fabricated using ceramics, intermetallics, metals and polymers, with a variety of
configurations : fiber, whisker, particle and plate reinforcements, laminates and multilayers,
etc. These materials, together with other examples such as woods and oriented polymers,
exhibit failure behaviors that are governed by anisotropic and heterogeneous characteristics
(Ashby er al., 1985; Evans, 1990; O’Brien, 1987; Sweeney ef al., 1988). An adequate
assessment of the mechanical properties of these materials requires experiments that identify
failure progressions and micromechanic models that quantify them. Mechanics solutions
for flaw-containing geometries with anisotropic and heterogeneous features are usually
involved in both aspects of the investigations.

In a recent paper (Suo, 1990a), a spatial rescaling was found to reduce plane elasticity
problems for orthotropic materials to equivalent problems for materials with cubic
symmetry. Practically, the latter may be approximated by isotropic ones under favorable
conditions. The concept thus provides a routine procedure to extract approximate solutions
for orthotropic materials, without any work, from isotropic solutions in standard hand-
books, such as those of stress intensity factors (Tada et al., 1985) and stress concentration
factors (Peterson, 1974). The concept is further developed here to study several important
technical problems, including cracks emanating from holes, fracture specimens, delami-
nation and crack deflection. Insight is gained into the interplay of anisotropy and finite
geometry that has long been puzzling. Moreover, the rescaling significantly reduces the effort
to compile analytic and numerical solutions for various practically important geometries. A
comprehensive finite element study on an array of commonly used fracture specimens for
composites and woods is in progress. A user-friendly catalog of specimen calibrations has
emerged as being guided by the orthotropy rescaling, which will be reported in a separate
work (Bao et al., 1991).
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2. ORTHOTROPY RESCALING

Plane stress states in a principal plane of an orthotropic solid will be assumed in the
body of the text. The procedure to obtain the corresponding solutions under plane strain
conditions is described in the Appendix. The coordinates x and y coincide with the principal
axes 1 and 2, respectively. Following Suo (1990a,b), we define two nondimensional elastic
parameters
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Here s,; are compliances as defined in the Appendix, which correspond to the Young’s and
shear moduli and Poisson’s ratios
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In terms of these engineering quantities, the following two dimensionless numbers can be
expressed
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The parameters measure the in-plane orthotropy : 4 = p = 1 for isotropic solids and 4 = 1
for solids with cubic symmetry. It turns out that a class of hypothetical materials obeying
p = 1 but A # 1 play an important role in the conceptual development. Such materials will
be called degenerate orthotropic for reasons that will become clear later. The requirement
of positive energy density for all strain states implies that 2 > 0 and p > —1. Values for
representative woods and composites are in the range 0.05 < A <20and 0 < p < 5.

Let U(x, y) be the Airy stress function so that stresses at equilibrium can be expressed
by
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In addition, the compatibility implies (Lekhnitskii, 1981)
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The above equations suggest that stresses depend on material properties only through 2
and p in simply-connected sheets with traction prescribed on the boundary. Further, the
rescaling described below allows the 4 dependence to be extracted explicitly.

Rescale the x-axis by

&=2"x, (6)
and the governing equation (5) now exhibits p dependence only
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Boundary conditions for U are rescaled accordingly
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With 4 absorbed in loading and geometric parameters, the boundary value problems on
the {y-plane have only one material constant, p, as in the governing equation (7). Observe
that for the degenerate materials with p = 1, the governing equation is identical to that for
isotropic materials. Consequently, solutions to degenerate orthotropic materials can be
readily constructed from those to isotropic ones. The detailed procedure will be illustrated
in the following sections.

For a crack in the x-direction, the stress intensity factors are defined such that

K[ ~ (znx)lﬂo_y’ Kll ~ (an)l/Z,er (9)

where ¢, and t,, are tractions a distance x ahead of the crack tip. On the &y-plane, the
above can be written as
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Stress intensity factors for a crack running in the y-direction are defined analogously to
scale o, and t,, directly ahead of the tip, which can be expressed on the ¢y-plane

2 2

LU U
K, ~ (270’)1/26*})7, ATy ~ ‘(275}’)1’2M~ (11)

These expressions are useful in constructing the A dependence.

To facilitate later studies, we cite the relations between energy release rates associated
with the two fracture modes and the stress intensity factors (Sih er al., 1965). For a crack
in the x-direction they are

1 1/2 1 1/2
G = <511522¥> ATKE, Gy = (Snszz -|2-p> ARG (12)

and for a crack in the y-direction they are

1+p112‘ 1+pl/2ﬂA
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The total energy release rate is G = G,+ G, for both cases. The above relations establish the
equivalence of the stress intensity factors and energy release rates. For a given problem,
the one which renders a simpler expression will be chosen to present the solution.

3. CRACKS EMANATING FROM HOLES

Cracks are likely to initiate at stress concentration sites such as holes and corners.
Isotropic elasticity solutions for stress concentration/intensity factors for most practical
geometries are available in several handbooks. The rescaling allows corresponding solutions
for the degenerate orthotropic materials to be constructed without solving new problems.
The concept is illustrated with an elliptic hole with and without emanating cracks in an
infinite orthotropic sheet subjected to remote tension.
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As depicted in Fig. 1, the transformation (6) rescales an ellipse in the xy-plane to a
different ellipse in the ¢y-plane. Boundary conditions that determine the Airy function U
on the {y-plane are modified according to (8). Linearity and dimensionality dictate that the
hoop stress at point 4 takes the form

0,(A)jo = C(p,1"*b/c). (14)

As a consequence of the rescaling, the stress concentration factor C(p, ¢) is a function of
two dimensionless variables instead of three. The interplay of the orthotropic parameter A
and aspect ratio b/c can therefore be appreciated even without knowing the actual form of
C': the stress concentration factor for the orthotropic sheet is the same for an ellipse with
a different aspect ratio, (4'*b)/c, in a cubic sheet.

The stress concentration factor for an elliptic hole in isotropic solids is well known
(Peterson, 1974, p. 84)

C(1,0) = 1+2. (15)

Without solving any new problem, one obtains the stress concentration factor for an elliptic
hole in the degenerate orthotropic materials

o,(A))o =14+21"blc, p=1. (16)

For example, suppose a circular hole (b = ¢) in a composite is loaded in tension in the fiber
direction (4 > 1), eqn (16) reveals that orthotropy amplifies the stress concentration: a
price must be paid for using composites.

The solution for nondegenerate orthotropic solids requires the complete determination
of the function C(p, 1). Since the second variable, 7, can be varied by varying either the
aspect ratio b/c or orthotropy 4, the complete problem is solved if one of the following
problems is solved: (i) a circular hole in an orthotropic material sheet or (ii) an elliptic
hole in a cubic material sheet. For this classical problem, both solutions are available in
Lekhnitskii (1981), which gives

Clp, 1) = 1+ /2(1+p) "1 (17)

Comparison of (17) with (14) yields the stress concentration factor for an elliptic hole in a
generally orthotropic sheet
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Fig. 1. Orthotropy rescaling. The boundary value problem on the éy-plane is for a cubic material
governed by eqn (7) in the text. The geometry and boundary conditions are rescaled from the
original problem on the xy-plane.
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o,(A)fo = 14+/2(1+p) 22" b/c. (18)

Observe that the p dependence is relatively significant for this particular case. Interestingly,
similar analysis shows the stress concentration factor at point B in Fig. 1 is p-independent

o.(B)jo=~i""2 (19)

Consider next cracks emanating from an elliptic hole in an orthotropic material sub-
jected to remote tension (Fig. 2). The stress intensity factor chart is reproduced directly
from Tada er al. (1985, p. 19.8), except for the A dependence added according to the
orthotropy rescaling. With such a slight reinterpretation, the chart is thus valid for degener-
ate orthotropic materials. For example, the chart gives the results for a circular hole in
orthotropic materials when b = c.

Formally, the stress intensity factor at an emanating crack tip takes the form

_ 4 s
Kl—a./naF((H_b,i b,p). (20)

The plot of Fig. 2 is essentially the function F(s, t, 1). Although the p dependence cannot
be determined by the rescaling, solutions for limiting cases would be helpful before more
complete solutions become available. For example, the stress intensity factor for a crack of
length 24 in an infinite orthotropic sheet is known to be independent of material properties
(Sih ez al., 1965)

K, = o/nd. @1

Used in an asymptotic sense, this classical solution provides the following information
on F
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Fig. 2. Stress intensity factors for cracks emanating from an elliptic hole in a degenerate orthotropic
material sheet.
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F(s,0,p)=s""% F(l,t,p)=1, (22)

suggesting that the p-effect should be small for long cracks. The asymptotic solution for
short cracks can be obtained using the stress intensity factor for an edge crack, with the
applied stress amplified by the stress concentration factor (18)

K, = Yo/ma[l+/2(14+p)" 2 *bjc], Y =1.12—0.011(p—1). 23)

Here the function Y(p) is the calibration factor for an edge crack in a semi-infinite body;
the approximate formula is a linear fit of the numerical results of Sweeney (1988).

In summary, the rescaling allows solutions for degenerate orthotropic materials to be
constructed, without solving new problems, from existing solutions for isotropic materials.
For situations when p is not very different from 1, or the data available do not allow an
accurate evaluation of p, one may be satisfied with such degenerate solutions which take
the principal orthotropy 4 explicitly into account. Solutions for nondegenerate orthotropic
materials require solving new boundary value problems, since there are no general guidelines
on the sensitivity of the p dependence at this stage. However, only cubic material solutions
are needed to construct the full orthotropic solutions. Rescaling in this latter context would
contract one variable in the compilation of numerical charts.

4. }**-CONTRACTION OF FRACTURE SPECIMENS

The compliance calibration is still heavily used in composite material fracture testing
for the lack of accurate elasticity solutions. Empirical calibrations obtained in this way
should only be valid for the materials being tested, since stresses in orthotropic materials
depend on elastic constants. This may partially explain why there are so many different
empirical formulae in the literature even for the most basic geometry, such as double-
cantilever beams. Guided by the orthotropy rescaling, a comprehensive finite element
calculation for a variety of commonly used fracture specimens is in progress, and the results
will be reported in Bao et al. (1990, 1991). Here a unique feature of anisotropic material
specimens will be discussed.

Most fracture specimens for composites are fabricated with strips in the fiber direction,
with pre-cracks either normal or parallel to the fibers. In this section the x-axis coincides
with the fiber direction so that A < 1. Calibrations for infinitely long strips are often adopted
in data reduction with the supposition that end-effects would decay rapidly. However, the
rescaling reveals that end-zones for orthotropic specimens are 4~ 4 times their isotropic
counterparts. In other words, the effective lengths of the orthotropic specimens are con-
tracted by a factor of 1'%, Consequently, longer specimens must be used for orthotropic
materials in order to avoid end-effect complications. The phenomenon may be termed as
AV4_contraction, which is universal whenever orthotropic materials are loaded in a stronger
material direction.

To illustrate the concept, consider the double-cantilever beam (DCB) in Fig. 3. Rig-
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Fig. 3. A double-cantilever beam along the fiber direction. P is the load per unit width of the
specimen.
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orous analytic considerations show the energy release rate should take the form
G =51 (Pa)’h~>g(p, A~ "*h/a) (24)

where P is the applied load per unit width of the strip, and g a nondimensional function of
two dimensionless variables, with the rescaling property built in.
The numerical solution for isotropic materials in Wiederhorn et al. (1968) gives

g(1,1) = 12(1+0.6771)%. 25)

The first term reproduces the result of the elementary beam theory, which is an exact linear
elasticity asymptote as the crack length is long compared with the beam thickness. The
second term is the correction due to the finite ratio a/h. An independent finite element
calculation shows that the error of (25) is within 1% whenever a/h > 1. For the degenerate
orthotropic materials with p = 1, combination of eqns (24) and (25) yields

G = 125, (Pa)*h*(14+0.6774" V*h/a)>. (25a)

The second term in parentheses is usually omitted in isotropic material testing. The term
becomes non-negligible for materials with high orthotropy (4 « 1) unless longer pre-crack
is used.

Finite element calculation indicates that the second term is also sensitively dependent
on the parameter p. The numerical results can be summarized compactly as

G = 125,,(Pa)*h~3(1+ Y)." V*hja)?
Y(p) = 0.677+0.149(p— 1)~ 0.013(p— 1)>. (26)

This last result is valid for generally orthotropic materials within the entire practical range
A'"afh > 1 and 0 < p < 5, and the error is within 1%.

5. SMALL-SCALE KINKING

For materials that possess planes having lower fracture resistance than other planes,
cracks may veer towards such weak planes under favorable conditions. Woods, for example,
are relatively strong when loaded along grains; an incipient crack running in from the
surface is often deflected along the plane containing grains, setting up cracks at right angles
to the original. Other well known examples are cleavage planes in certain crystals, and
planes containing fibers in composites. However, it does not follow that cracks will always
be deflected whenever such an easy fracture plane exists. Whether a crack will be deflected
also depends on the relative driving force available for the potential fracture paths. Several
deflection criteria have been discussed in the literature; the present work extends the
energetic criterion for elastically isotropic solids such as some ceramic-matrix composites
previously proposed by He and Hutchinson (1989).

A parent crack in the x-direction deflected into the y-direction is shown in Fig. 4. A
small-scale kinking problem appropriate for the initial deflection is posed: the kink size is
much smaller than all other macroscopic in-plane lengths so that the actual specimen
geometry and applied load can be represented by the remote nominal stress intensity factors
K, and Kj;. The driving force for the crack extension in the x-direction can be readily
obtained from eqn (12). The remaining problem is to seek the driving force for the deflection,
or the stress intensity factors at the kink tip K{® and K}P.

As dictated by the linearity and dimensionality, the stress intensity factors at the kink
tip must linearly depend on the remote ones. The solution is independent of kink size a,
because it is the only length for the small-scale kink problem. Thus, all linearity coefficients
depend only on the elastic parameters 4 and p. A further simplification results from the
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K,

Fig. 4. Small-scale deflection in orthotropic materials. The remote loads and geometry are rep-
resented by the nominal stress intensity factors K; and Kj;. Stress itensity factors at the kink tip,
K and K", are linearly dependent on the nominal stress intensity factors.

rescaling. As suggested by (10) and (11), the two pairs (K®, 4~ "*KiP)and (A~ YKy, A~ '"*Kq)
are related with coefficients depending on p only. Thus,

KiP = ¢ A7 P K4 cind” Ky
Kip Czlllél/sKl‘*‘sz)ﬁ”gKu (27)

where ¢; = ¢;(p) are functions of p only.

Values of the coefficients in Table 1 were calculated using an integral equation method
described in Wang er al. (1991). Observe that these coefficients do vary to some extent
within the practical range 0 < p < 4, but the values for degenerate materials will be used

Table 1. Coefficients for small-scale kinking

p Ch Ci2 €2 C22 |
0.1 0.397 1.073 —0.371 —-0.216
03 0.390 1.104 —0.365 —0.210
0.5 0.384 1.132 —0.359 —0.204
0.7 0.379 1.158 —0.354 —0.200
0.9 0.375 1.182 —0.350 —0.196
1.1 0.369 1.204 —0.346 —0.193
1.6 0.360 1.255 —0.337 —0.185
2.1 0.352 1.299 —0.330 —-0.178
2.6 0.345 1.339 —0.324 —0.173
31 0.338 1.375 —0.318 —0.168
3.6 0.333 1.409 —0.313 —0.164
4.1 0.328 1.439 -0.309 —0.160
4.6 0.323 1.468 —0.305 —0.157
5.1 0.319 1.495 —0.301 —0.154
5.6 0.315 1.521 —0.298 —0.151
6.1 0.311 1.545 —0.294 —0.148
6.6 0.308 1.569 —0.291 —0.146
7.1 0.305 1.591 —0.289 —0.144
7.6 0.302 1.612 —0.286 —0.142
8.1 0.299 1.632 —0.283 —0.140
8.6 0.296 1.652 —0.281 —-0.138
9.1 0.294 1.671 —0.279 —0.136

9.6 0.292 1.689 —-0.277  —0.135
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in the following discussion for simplicity. The latter are identical to the isotropic solution
of He and Hutchinson (1989):

Cciy = 0374, Cip = 1189, Cyy = —0347, Cyry = —0200, forp =1. (27a)

The energy release rates for a virtual crack extension in the y-direction can be readily
evaluated by combining (27) and (13).

Consider an important case when the parent crack is normal to the fiber direction, and
the remote load is pure mode I. The driving force ratio of the deflection to straight extension
is

GG, = (¢} +c3)A "4 =0.2604 "4 (28)

The physical significance of the result may be appreciated as follows. Suppose the fracture
energy for straight extension is I, and the fracture energy for the delamination in the fiber-
containing plane is I',. According to (28), deflection is favored as opposed to straight
extension if

I,T < (c2) +c2)A~ " = 0.2604 *. (29)

Observe that elastic orthotropy (4 > 1) lowers the possibility of deflection, all other aspects
being fixed. Notice that the delamination energy I', usually depends on the relative propor-
tion of sliding and opening measured by the loading phase y = tan™' (|K{P|/K{"). For the
present situation as inferred from (27), T’ at loading phase ¢ = tan™' (A"%|¢yi|/cp)) =
tan~' (0.9284'%) is the relevant quantity.

For both orientations of cracks in composites (i.e. both normal and parallel to the
fibres) initial extension is likely to be parallel to the fibres by matrix cracking. Consider
next the possible correlation of the macroscopic fracture toughnesses for cracks in the two
orientations. Suppose the matrix cracking is a mode I controlled process which takes place
when G =T',,, where I,, is essentially the matrix fracture energy for brittle composites.
The postulate is analogous to the one based on the hoop stress proposed by Ashby et al.
(1985). With this postulate, eqn (27) predicts the nominal fracture energy I',, for pre-
existing cracks normal to the fibers

LT, = A"4c2, = 7.154"° (30)

The result indicates that elastic orthotropy (4 > 1) enhances the nominal fracture energy
for pre-existing cracks normal to the fibers. It is important to notice that fracture normal
to fibers in brittle composites is strongly resisted by fiber pull-out leading to resistance
curves. The prediction (30) only gives the initiation fracture energy which should not be
confused with the steady-state values.

As already emphasized, the relation (27) holds only when the kink size is small
compared with all other macroscopic lengths. An intermediate-scale kinking model taking
into account the in-plane stress (He et al., 1990) can also be extended with the orthotropy
rescaling. A large-scale delamination problem is discussed in the following section.

6. SURFACE FLAW INDUCED DELAMINATION

Laminates fabricated either with plies of carbon—epoxy composites or with alternate
sheets of metals and ceramics exhibit several common features in the failure progression,
such as cracks tunneling through the off-axis plies or the ceramic layers, and interfacial
delamination. Delamination is also a dominant failure mode in uniaxially reinforced
composites.

Attention here is focused on delamination induced by surface flaws in woods or
uniaxially reinforced composites. Incipient delamination splits are not well characterized
for two reasons. Under fixed nominal loads, firstly, the driving force at the crack tip depends
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sensitively on the surface flaw geometry that induces the delamination. Secondly, the
cracking is strongly resisted by the fiber cross-over or matrix ligament bridging that lead
to resistance curves (de Charentenay et al., 1984 Sbaizero et al., 1990). Once the split is
sufficiently long, however, the delamination attains a steady-state : both driving force and
fracture resistance become independent of the split length and initial flaw geometry. A
large-scale bridging model has been developed recently to account for the observed fracture
resistance curves (Bao et al., 1990; Suo et al., 1990). To gain insight into the effects of
anisotropy, here we will study the steady-state driving force and the transient zone size for
a specific example, with bridging assumed not to occur.

A delamination crack originated from a notch under axial tension is depicted in Fig.
Sa. The geometry is representative of a large family of beam-like specimens, such as crack-
lap-shear (CLS) specimens, used by the composite materials community to study mixed-
mode fracture, notch sensitivity and delamination. The energy release rates take the non-
dimensional form

G .a H ) Gy ( a H )
T ay, — v PERR s T 3. T ll/"A’-’ 31
5.0k g‘(’ W) osien I\t e’ (31

where the rescaling information has been built in. For the degenerate materials with p = 1,
the results are identical to those for isotropic solids except for the rescaling. The latter
solutions have been partially reported in Thouless et al. (1989) and Bao et al. (1990), and
the more complete results are plotted in Fig. 5.

Observe that the energy release rate attains the steady-state when the split is sufficiently
long. Inspection of Fig. 5b—d suggests that the transient zone size is roughly given by
A%alh = 2, or
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Fig. 5. (a) Delamination initiated from a notch and driven by the axial load. (b} The normalized
total energy release rate. The interplay between orthotropy and delamination length is captured by
the combination A'“a/h. (c), (d) The mode I and mode II energy release rates.
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A split longer than a few times notch size is subjected to nearly constant driving force at a
fixed nominal tensile stress. Equation (32) also reveals that elastic orthotropy tends to
prolong the transient zone by a factor of 1~'"*. The steady-state condition (32) is roughly
valid for all beam-like specimens with the edges subjected to axial forces or bending
moments without shear forces.

A finite element calculation has been made to study the p-effect in the transient zone.
The results are plotted in Fig. 6. Apparently, the initial stage of the split is influenced by p
to some extent, yet the size of the transient zone is not significantly modified so that eqn
(32) remains valid for generally orthotropic materials.

Since the steady-state condition (32) can be easily satisfied in practice, the steady-state
problems, a semi-infinite crack in an infinite strip, are therefore of particular significance.
The problems have been solved completely for arbitrary edge loads in Suo (1990a). Spe-
cialized to the present edge load, the mode I and mode II energy release rates are
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G\/(s1,6°h) = 3(1+4n+6n>+3n°) cos’ @
Gu/(s,,0°h) = Y(1+4n+6n?+3n%) sin* @ (33)

where n = h/H, and o depends on 5 and p only but is independent of 4 as a consequence
of the orthotropy rescaling. Numerical calculations give

w =~ 52.1°=3%, (34)

The error of the above approximate formula is within 1% for the entire practical range
0 <y <1land 0 < p < 5. Notice that the normalized steady-state energy release rates are
strictly independent of /4 and approximately independent of p, and therefore approximately
identical to those for isotropic solids. The conclusion remains valid for arbitrary edge loads ;
an important point that has not been appreciated in the earlier paper. The steady-state
solution (33) is also included in Fig. 5.

The crack tip loading phase i, defined by tan y = K|,/K], is a measure of the proportion
of the shear and tensile stresses ahead of the crack tip. Combination of (12) and (33) gives

tany = A~ Y tan w. (3%

Equations (34) and (35) suggest that the loading phase ¥ does not vary much with the
geometric ratio h/H, but can be substantially modified by the orthotropy. A larger shear
component is anticipated for significant orthotropy (1 < 1).

7. CONCLUDING REMARKS

For traction-prescribed plane problems, the elastic orthotropy is characterized by
two dimensionless parameters 4 and p. The orthotropy rescaling transforms problems to
equivalent ones for materials with cubic symmetry. We demonstrate that this idea, together
with other elementary analytic considerations, simplifies a variety of problems of practical
significance for unidirectional composites. For example, an accurate, simple calibration for
double-cantilever beams is given by eqn (26). Many other specimens are compiled in the
same way by Bao er al. (1991). Several limitations are observed. The method is useful only
for load prescribed boundary conditions, since displacement boundary conditions would
introduce additional material dependence. For problems with finite geometry, the rescaling
changes the aspect ratio, so that it is advantageous only when the problems are analyzed
systematically, with variable aspect ratios.
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APPENDIX

Let the coordinates x, y and z coincide with principal material directions of an orthotropic solid. Hooke’s
law may be written as

&, Si S1a Sy 0 0 [
£, Say Sas Sa3 0 0 g,
€. _ |5 osn sy 0o 0 o g. A1
Vs 0 0 Sqa 0 0 T,
Vex 0 0 0 555 O Ty
Vv L0 0 0 0 0 4] Ty

where s5; = s;; are compliances. For plane stress problems in the xy-plane, the relevant compliances that appear
in the governing equation (5) of the text are s,,, 5,5, 5,, and s¢,. For plane strain problems, the governing equation
and the definition of 4 and p remain unchanged except that all compliances need be replaced by (Lekhnitskii,
1981)

S = 5 —$1385;3/833. (A2)

This replacement should be done with all the solutions in the text if the plane strain conditions prevail.




