J. Mech. Phys. Solids Vol. 39. No. 7. pp. 963-986, 1991. 0022-5096,91 S3.00+0.00
Printed in Great Britain. C 1991 Pergamon Press pic

DUCTILE FAILURE OF A CONSTRAINED METAL FOIL

A. G. Varias, Z. Suot and C. F. SHiu?

Division of Engineering, Brown University, Providence, RI 02912, U.S.A.
t Department of Mcchanical and Environmental Engineering, University of California.
Santa Barbara, CA 93106, U.S.A.

(Received 30 April 1990)

ABSTRACT

A METAL foil bonded between stiff ceramic blocks may fail in a variety of ways, including de-adhesion of
interfaces, cracking in the ceramics and ductile rupture of the metal. If the interface bond is strong enough
to allow the foil to undergo substantial plastic deformation dimples are usually present on fracture surfaces
and the nominal fracture energy is enhanced. Ductile fracture mechanisms responsible for such morphology
include (i) growth of near-tip voids nucleated at second-phase particles and or interface pores, (i) cavitation
and (iii) interfacial debonding at the site of maximum stress which develops at distances of several foil
thicknesses ahead of the crack tip. For a crack in a low to moderately hardening bulk metal, it is known
that the maximum mean stress which develops at a distance of several crack openings ahead of the tip does
not exceed about three times the yield stress. In contrast, the maximum mean stress that develops at several
foil thicknesses ahead of the crack tip in a constrained metal foil can increase continuously with the applied
load. Mean stress and interfacial traction of about four to six times the yield of the metal foil can trigger
cavitation and/or interfacial debonding. The mechanical fields which bear on the competition between
failure mechanisms are obtained by a large deformation finite element analysis. Effort is made to formulate
predictive criteria indicating, for a given material system, which one of the several mechanisms operates
and the relevant parameters that govern the nominal fracture work. The shielding of the crack tip in the
context of ductile adhesive joints, due to the non-proportional deformation in a region of the order of the
foil thickness, is also discussed.

1. INTRODUCTION

AMONG the materials being considered for high-performance power propulsion sys-
tems are ceramics and intermetallics containing controlled amounts of ductile metals.
An example is high ceramic content composites made by infiltrating molten metal
into a ceramic preform containing pore channels. Laminates with alternate ceramic
and metal shezts, and ceramic components diffusion or liquid state bonded with metal
foils are other examples. When these composites are loaded, the plastic deformation
in metals is constrained by the surrounding elastic solids and high mean stress usually
develops. Metals constrained as such exhibit failure modes that are not normally
observed in unconstrained deformation. In a tensile test of a lead wire bonded in a
glass cylinder, for instance, ASHBY et al. (1989) observed that the wire failed by
the unstable growth of a single cavity. This behavior is intriguing, because, under
unconstrained tension, the same lead wire failed by drawing to a point. The unusual
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instability of the constrained lead wire has been rationalized on the basis of high
triaxiality induced cavitation by HUANG et al. (1990). Specifically, a cavity in an
infinite elastic-plastic solid is shown to grow unstably ata critical triaxiality (the ratio
of the mean stress to the uniaxial yield strength, ¢,,/5,). The critical triaxiality for
non-hardening metals is about 4, and such a high level is rarely attained in common
metal deformation modes. For example, an isolated plane strain crack in a non-
hardening metal induces a maximum triaxiality of about 2.4 (RICE and JOHNSON,
1970).

A sequence of experiments has been recently conducted with ceramic plates sand-
wiching metal foils (DALGLEISH et al., 1983 DALGLEISH ef al., 1989 ; REIMANIS et al.,
1990 : REmManis and Evans, 1991). Plasticity effects on the overall mechanical prop-
erties such as nominal strength and fracture energy are explored. When interfacial
adhesion is strong and the foil is thin, an array of cavities is observed to nucleate and
grow at distances several foil thicknesses ahead of the crack tip (Fig. 1). The length
scale of the above failure mode is different from that for a crack in a bulk metal where
voids nucleate and grow ahead of the crack tip within distances of the order of crack
tip opening. As a consequence the nucleated cavities do not coalesce with the crack
tip. Instead with further loading new cavities are nucleated at even larger distances
from the crack tip leading to a rising crack growth resistance curve. The bridging
zone develops until the cavities nearest to the tip coalesce with the crack.

In this paper the fields that develop in a constrained metal foil are obtained by a
full-field large deformation elastic—plastic finite element analysis. These detailed fields
are necessary for understanding the different failure modes that have been observed
in experiments. We formulate predictive criteria indicating, for a given material
system, whether high triaxiality induced cavitation and/or interfacial de-adhesion will
be favored over near-tip void coalescence, and how these failure mechanisms govern
the nominal fracture energy.

2 A LARGE DEFORMATION ELASTIC-PLASTIC ANALYSIS
2.1. Muterial specification

The competition of the various failure modes can be studied by a systematic analysis
of the boundary value problem shown in Fig. 1. A metal foil of thickness /1 is bounded
between two identical elastic substrates. Young's moduli and Poisson’s ratios are E
and v for the metal foil and E, and v, for the substrates. The plastic deformation of
the metal is governed by a finite strain J; flow theory which is discussed in Appendix
A. Strain hardening is controlled by a hardening function H(£") which evolves accord-
ing to the isotropic relation

AL
H(E) =ot><1+%> , )

where n is the strain hardening exponent, £” the equivalent plastic strain, ¢, the initial
yield stress and ¢, the reference strain (& = oo/ E). Our implementation is based on
a visco-plastic relation ; however, the strain rate sensitivity m is assigned a value of
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FIG. 1. A metal foil bonded between two ceramic substrates, with a centerline crack. The elastic K,-field is
applied at distance r » A.

0.005 which is appropriate for metals exhibiting essentially rate-independent behavior.
Thus our analysis pertains to a rate-independent material with initial yield stress g,
and hardening exponent #.

Most of the results presented are for a ceramic/metal with properties

Ejoy =300, n=10, v=033, v,=02 E/E=S5. (2)

Nevertheless, the overall features of the fields can be regarded as generic and the
trends apply to other material combinations as well. In the interest of space, the
detailed fields for the other material combinations that we investigated are not
presented. Quantities which are important to the interpretation of failure competition
and the computation of the nominal fracture toughness are tabulated.

2.2. Boundary value problem

A crack lies along the centerline of the foil of thickness /. The foil is thin compared
to the overall specimen dimension, so that plane strain deformation prevails and at
distances large compared to 4 the stress field in the substrates can be represented by
the homogeneous mode I elastic crack-tip field

K
9y, 0) ~ = £,(6), r>h, (3)
JQnr)
where the angular functions f;; can be found in fracture mechanics textbooks. The
remote mode I stress intensity factor, K, can be related to the actual applied load via
elasticity calibration appropriate for the given specimen.
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The nominal energy-release rate, G, is given by Irwin’s formula

-V
G= I—E K7 (4)
The elastic constants in Eq. (4) are those of the substrate material since the remote
field 1s unaffected by the thin foil.

The boundary value problem has two independent length scales, 4 and (K,/o,)>.
The latter length is of the order of the plastic zone size r,, which is defined as the
maximum radial distance of the contour line £’ = 0.001 from the crack tip. For
vanishingly small plastic zones, r, « A, an inner K-annulus of characteristic size ry
exists near the tip, the domainranging r, < ry « h. Under this condition, the amplitude
of the inner K-field, designated by K, is related to the remote K, by

E/1=v\]'" _
[£(=0]

The above relation follows directly by application of the path-independent J-integral
(RICE, 1968). The plastic zone size relative to the layer thickness is given by
(K//(go/M)*. In reporting our results, the non-dimensional load parameter
K,/(60/h) is used.

3. ELEVATION OF STRESS TRIAXIALITY

Within the limits of small-scale yielding defined by r, « /1, the fields in the region
r < ry are self-similar, i.e., the stresses have the form a,; = a,9,,(r/(K/5,)", 0). For a
modest increase of applied load beyond that of small-scale yielding, the crack-tip fields
in the metal foil are again self-similar but are of the form o, = aoh;;(r/(Joi/0y), 6).
Here J, is the value of the J-integral evaluated within the near-field annulus
50, < r < r,, where J, is the crack tip opening displacement. Self-similar fields for a
plane strain crack in a bulk homogeneous material have been discussed by Rice and
JoHNsON (1970) and MCMEEKING (1977).

3.1. Evolution of high stresses

Our analysis of the boundary value problem, using the mesh depicted in Fig. 10
of Appendix A, shows that the fields are nearly self-similar for plastic zone size less
than /4 ; for larger plastic zones the stresses deviate from the self-similar distribution,
the difference becoming significant when r, is greater than /. The above trends
can be seen by examining the behavior of the mean stress o, defined by g, =
(6,,+0:,4+03;)/3. Figure 2 shows the triaxiality distribution along X, =0 for
four load levels as parameterized by K,/(g4+//). The distance from the tip is normalized
by Ju/oy; Ju: 18 the value of the J-integral evaluated from the near-fields within the
annulus 5, < r < r, using the domain integral formulation (L1 et al., 1985). Since
Jorloy = 20,, the abscissa ranges from 0 to about 160,. The finite strain zone is of order
30,—therefore the distances examined in Fig. 2 do span length scales of relevance. The
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FiG. 2. Distribution of near tip triaxiality for various loading levels. J,, is the near-field path-independent
value of the J-integral. The triaxiality increases continuously with applied load.

stress triaxiality reaches a maximum of about 3 at X1 = 39,, which is just beyond the
zone of finite strains. It can also be seen that the mean stress levels increase with the
applied load. These trends are representative of the behavior of the other stress
components. In passing we note that the mean stress distribution for the smallest
applied load, K;/(c,\/h) = 5.06, corresponds to a g, distribution which is nearly
identical to that given by MCMEEKING (1977).

When r, exceeds 34, the character of the mean stress distribution is changed. At
K,/(ao\/h) =10.1 (r, =3.3h). a second triaxiality maximum of 3.4 develops at
a distance 1.14 ahead of the crack tip. The second maximum, denoted by ¢, in-
creases almost linearly with the applied load. Moreover its location, X'}, shifts farther
ahead of the tip with increasing load. Displayed in Fig. 3a is the triaxiality distribution
along the centerline of the metal foil for four load levels. For loads beyond K,/
(oh) = 12.7 (r, > 4.7h), the near-tip triaxiality maximum vanishes altogether and
the near-tip stress level decreases. [n contrast, the stresses at r > /1 and the larger stress
maximum increase rapidly with the applied load. These same fields are replotted
against distance normalized by (K)/oy)” in Fig. 3b. In the new normalized distance
the stress distributions for the four load levels collapse onto a single curve at distances
beyond X% This suggests that, beyond the peak stress region, the field within the
metal foil has the dependence 0 = 00q,,(X/(K,Jo,)?), as dictated by the remote
K-field. On the other hand, the peak stress % scales almost linearly with K;/\/h, with
the proportionality constant depending primarily on £ /E.

The normal stress ¢,, exhibits the trends shown in Figs 2 and 3; it also peaks at
AT, the site of maximum mean stress. At distances beyond X}, the variation of the
stresses through the layer is negligible so that large normal tractions act across the
interfaces between the metal foil and the substrates. The distribution of the stresses
03, 04, and ¢, (in the metal foil and the ceramic) along the interfaces in Fig. 4
reveals high normal stresses but low shear stress. Within distances of several is where
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FiG. 3. Distribution of triaxiality along the crack ligament for various loading levels in the range of
cavitation. (a) A second and higher peak stress develops at distance of several layer thickness ahead of the
cruck tip. (b) Beyond the peak stress. the ficld scales with K.

the plastic strains dominate, ¢, is higher in the metal foil. At larger distances, o, is
higher in the ceramic and its magnitude approaches that of ¢,, as required by the
imposed mode I K-field.

The effect of material moduli on stress triaxiality is shown in Fig. 5. Under the
same load, K,/(o‘o\/lz) — 12.65. the difference in moduli has a pronounced effect on
the peak stress—a}%(E,/E = 1) is 25% higher than o}(E,/E = 5). At larger distances.
r > h, where the fields are elastic, the difference increases to 40%. The latter figure
can also be estimated by relation (B3) in Appendix B which was derived by taking
into consideration the discontinuity of o, across the interfaces. Material strain harden-
ing has a slight effect on the peak stress. The finite element field shows that the
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FiG. 4. Distribution of ¢, ¢, and a,, (-~ of the ceramic; —. — of the metal foil) along the
metal-ceramic interface.

maximum triaxiality, o%/o,, develops in a region of comparable elastic and plastic
strains where strain hardening properties of the layer are of no consequence.

The maximum mean and normal stress, and the location X* for five material
combinations are given in Tables la—e. The loads are parameterized by K,/(GOV///I) or
by G/(a,h). where G [see Eq. (4)] is the nominal energy-release rate. The material
system with £/ E = 20 is representative of a polymer layer bonded to metal substrates.
For the loading range considered, which covers those of practical relevance, the
distance Xf ranges between 1h and 44.

We have observed that ¢, scales almost linearly with K,. . The proportionality
constant, Cs, determined from the finite element results and relation (B4) of Appendix

X, /h

FiG. 5. Effect of material properties on the stress triaxiality.
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TABLE 1. Field quantities pertinent to metal foil failure. o}f: maximum mean siress
along the ligament. 6%, maximum hoop stress along the ligament. X¥: position of o
and 6%,. 6, crack tip opening displacement

TasLe la. Eje, =300.v=033,n=10,v,=02, E/E= |

K//(”m/’” Gi(aqh) omlo, Xtk 0%:/0, l/d
8.85 0.25 3.97 1.37 4.66 1.87
9.49 0.29 4.18 1.60 4.88 1.81

10.12 0.33 4.39 1.82 5.08 1.74
11.38 0.41 4.79 2.05 5.47 1.61
12.65 0.51 5.14 2.35 5.81 1.49
TABLE 1b. E/oy=300,v=0.33,n=10,v, =02, EjE= 2

K/l(go/h) Gi(yh) a¥lo, X*h 6%:/0, 1,d
10.23 0.17 4.06 1.37 4.76 1.99
13.20 0.28 5.02 2.05 5.71 1.76
15.14 0.37 5.51 2.35 6.18 1.60
16.41 0.43 5.92 2.75 6.59 1.50
17.21 0.47 6.00 3.28 6.70

TABLE lc. E/g,=300,v=033,n=10,v, =02, E/E=35

Kij(ao/h) Gi(aoh) an/oo Xtlh 9%:/0 1.d
12.65 0.10 4.11 1.60 4.28 2.02
15.18 0.15 4.84 2.05 5.55 1.90
17.51 0.20 5.49 235 6.20 1.78
20.04 0.26 6.15 275 6.86 1.64
21.99 0.31 6.65 3.28 7.37 1.53

TaBLE Id. Efo, =300,v=033n=0.v,=02E/E=5

K (a0l Gi(on,h) oo, X*¥h o%./o, lid
11.39 0.08 3.64 1.82 4.26 1.31
12.65 0.10 3.98 2.05 4.58 1.23
15.18 0.15 4.67 2.75 5.27 1.10
16.45 0.17 4.96 3.28 5.58 1.05
20.24 0.26 5.90 398 6.49 0.91

TABLE le. Ejg, = 66.67,v=0.33.n=10,v, =033 EJE=20

Ki/(aoh) Gj(ooh) amloo Xtih ot/oy 1d
12.66 0.11 2.56 1.16 323 1.74
14.90 0.15 3.01 1.38 3.69 1.73
17.14 0.20 3.46 1.79 4.14 1.67
19.38 0.25 3.90 1.96 4.59 1.58

21.62 0.31 4.35 2.45 5.03 1.49
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TABLE 2. Proportionality constants Cs and Cx in the cavitation range. Elc. = 300,
v=10.33v,=02

Material properties Cs = K)f(oxh) Cy = K /{(o%:y'h)
E/E n Finite clements Relation (B4) Finite elements
1 10 2.5 2.5 22
2 10 2.8 3.0 2.4
5 10 3.2 34 2.8
5 o0 3.2 3.4 2.8

B for four material combinations are tabulated in Table 2. It can be seen that the
analytic estimates agree well with the finite element results. In the case of a system
representative of metal-polymer, the finite element calculation yields K,/(a%\/h) =
5.0 while 3.7 is the value estimated by relation (B4). Likewise, o3, nearly scales
with K,/\/h and the proportionality constant, Cy, is given in Table 2.

3.2. Overall features of stresses

It is useful to summarize the overall features of the fields. For r, < A, the near-tip
fields are nearly self-similar having the form

r
Gij = O'ohij 7m, 0 ). (6)

For low to moderately hardening material, the maximum mean stress develops at
about 33,s ahead of the tip and does not exceed about 3g,.

In the large-scale yielding regime, r, > £, the maximum stresses scale with the
applied load

ot = C5'KifJh M
ot = C'KyfJh, (8)

where C, and Cy are weakly dependent on E,/E and are given in Table 2. The peak
stresses develop at distances of several foil thicknesses ahead of the tip, and increase
continuously with applied load until an intervening failure mechanism becomes oper-
ative. In the interval 38, < X, < X'}, the mean and normal stresses along the centerline,
increase almost linearly with distance (see Fig. 3a), behaving like (g,,, 012) & o0X /h.
The proportionality constants depend on strain hardening and E,/E. Beyond the peak
stress region, X, > X* the X, variation of the stresses in the foil has the form

=2 (i) ’
Ty = 0oty (KI/JU)z . ®

Self-similar fields of the form in Eq. (6) for non-hardening and low to moderately
hardening materials have been discussed by MCMEEKING (1977). These self-similar
fields have been shown by O’DowD and SHiH (1991) to be a particular member of a
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FiG. 6. Evolution of the plastic zone constrained by elastic substrates.

family of crack-tip fields which can be obtained by applying a tensile (or compressive)
stress parallel to the crack plane; indeed their high- and ultra-high-triaxiality stress
fields are similar to the fields shown in Figs 2 and 3. We note that stress triaxiality
can also be elevated by partially constrained large-scale plastic flow. For example,
plastic flow emanating from an interface crack and constrained by the boundary of
an elastic substrate can elevate the mean stress by as much as 40% beyond the level
that develops in a homogeneous material (SHIH ¢t al., 1991).

4. DEVELOPMENT OF PLASTICITY FIELDS
4.1. Growth of plastic zone

Under small-scale yielding conditions, r, « 4, the calculated plastic zone size follows
the known form r, = 0.15(K/a,)*. Upon coming into contact with the stiff elastic
substrates the plastic zone is constrained and spreads laterally. The evolution of the
plastic zone in the metal foil for the system described by Eq. (2) is shown in Fig. 6.
The growth of the plastic zone with applied load K,/(a JM is shown in Fig. 7. In the
range r, >» h, the plastic zone size scales linearly with (K,/c,)". The proportionality
constant depends on the ratio of the Young’s moduli. £,/ E. and Poisson’s ratios of
the foil and the substrates. Table 3 compares the proportionality constants, determined
from the finite element results and that given by relation (B35) of Appendix B. for
Ejo, =300, v =033 and v, = 0.2. The good agreement is noted. For the metal-
polymer system in which the mismatch of the elastic moduli is very large, the finite
element solution gives r,/(K,/a,)* = 0.055, while the analytic prediction is 0.038.

4.2. Cruck-tip shielding

The value of the J-integral is calculated for contours of increasing mean radius
around the crack tip by the domain-integral method of L1 er al. (1985). The value of
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FiG. 7. Growth of plastic zone size with applied load.

TABLE 3. Proportionality constant, t,/(K,/a,)’, in the range r, > h.
Elg,=300,v=0.33,v,=0.2

Material properties o (Kpiay)

EJE n Finite clements Rclation (BS)
1 10 0.031 0.035
2 10 0.019 0.018
5 10 0.025 0.027
5 £ 0.029 0.027

J normalized by G (which is als0 J, ) versus the mean radial distance of the annular
strip of elements from the tip is shown in Fig. 8 for four levels of applied load. For
K,/(ooh) < 2.5, where r, < h/4, J is path-independent everywhere excluding the
crack-tip region r < 59,, i.e., Joy = Jremowe (= G).

As the plastic zone size increases, path-independence of Jis preserved in two distinct
regions, 5, < r < r, (or i whichever is smaller) and &/« r < L (L is the distance to
the load point) but Jy # Jemoe (= G). The inner annulus, referred to as the near-
field or local J-annulus, lies wholly within the plastic zone while the outer or remote
annulus lies at distances large compared to the foil thickness. The shielding of the
crack tip, Jur < Jremow- 18 the consequence of the non-proportional stressing associated
with the plastic flow in the metal foil being constrained by the substrates. The deviation
of Jo; from Jomew can be seen in the curves for K,/(g(/h1) = 5.06, 6.96 and 10.12. For
these three cases, J, is defined by the mean value of J within the annulus
0.1 <r/h<04.

The practical significance of crack-tip shielding may be appreciated in the following
way. Imagine a fracture test of a ductile adhesive joint, with the layer thickness of the
order of the critical plastic zone size tested in bulk. Under remote loading, the crack
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FiG. 8. The J-integral evaluated near the tip is plotted against the mean radii of the integration paths. The
local annulus in which the J-integral is path-independent can be seen.

advances when J,, attains the bulk toughness of the adhesive J, provided that the
material properties of the adhesive are not modified in the joining process. The
shielding implies that the measured nominal fracture energy of the joint, G¢. will be
higher than the bulk toughness J¢ of the adhesive. Indeed, an increase of the nominal
fracture energy for certain adhesive thicknesses has been observed experimentally
(e.g. Bascom er ul., 1975 Bascoum and COTTINGTON, 1976 CHaL 1986).

The shielding described above is different from the shielding of near-tip K from
remote K, due to large mismatch of elastic moduli. E,/E [see Eq. (5)]. which has
been observed in brittle adhesive joints such as glass adhesives used to join ceramic
components (FLECK et al.. 1990 Suo, 1990).

4.3. Crack-tip blunting

Under small-scale yielding, a relationship of the form 9, = d(ey, n)J;o, has been
shown for bulk metals. Here 9, is the opening separation where the 45 lines, drawn
backwards from the crack tip, intercept the deformed crack faces, and d is a pro-
portionality factor which depends strongly on n and weakly on ¢, (SHIH, 1981). For
the constrained metal foil. J, is almost linear with Jy,

R Jui
= d(go. ) = (10)
Gy

where d depends additionally on the parameters of the system. e.g., E\/E, r,/h. Under
small-scale yielding, d=d.

The variation of 8,/h, and 8, normalized by (G/oy) with applied load is shown in
Fig. 9. In this plot. 0, is twice the displacement of point A along the X,-axis, where A
is the intersection of the straight flank and the curved notch surface in the undeformed
configuration (see Fig. 10 of Appendix A). In the context of this boundary value
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Fi1G. 9. Variation of crack tip opening displacement with the applied load.

problem, ¢, scales linearly with G/g, only if r, « h. For K = 2.020/hand r, = 0.15h,
0,/(G/oy) is equal to 0.51, which agrees well with the value of 0.52 for a bulk material
with the properties of the foil (SHiH, 1981). As the plastic zone expands, this ratio
decreases initially, reaching a minimum for r, = 24 and then increases again. The
initial decrease is a consequence of the shielding of the crack tip by constrained plastic
flow. With higher applied loads, the highly constrained large scale plastic flow (r, » /1)
elevates the mean stress in the foil which results in the J, increasing at a faster rate
than G/o,. The ratios G/(c,0,) (= 1/d) are given in Tables la-e for several material
systems.

5. COMPETING FAILURE MECHANISMS

The maximum mean stresses that can develop within a metal foil are much higher
than those associated with an isolated crack in the corresponding bulk metal. This
response makes the constrained foil susceptible to failure mechanisms associated with
high normal stresses. The competition of three potential mechanisms are considered
here. They are: (1) near-tip void growth at second-phase particles or interfacial pores
and coalescence with the main crack, (it) high-triaxiality cavitation, i.e.. nucleation
and rapid void growth at highly stressed sites at distances of several layer thicknesses
from the crack tip, and (iii) interfacial debonding at the site of highest normal
interfacial traction.

Crack advance by growth and coalescence of near-tip voids with the crack is a
typical ductile fracture mechanism. Voids in the present context can be either those
nucleated around second phase particles in the metal foil or residual pores on the
interface formed in the processing. In particular, when the crack tip blunts to an
opening of the order of the mean spacing between voids. X,. the voids are wholly
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within the finite strain zone so that void-crack coalescence is imminent (¢.g. RICE and
JOHNSON. 1970). Combining the growth criterion

(5,:X‘) (]la)

with Gi(a,0,) = | dleads to a relation for the critical nominal energy-release rate for
such void-crack coalescence

Ge = (1/d)oy X, (11b)

The values for 1'd can be found in the last column in Tables la-e. For the material
system described by Eq. (2), |/d decreases from about 2.0 to 1.5 as the plastic zone
size increases from a fraction of 4 to several /is.

In very thin foils. cavitation at the site of high triaxial stresses at distances of several
hs ahead of the crack tip may precede coalescence. According to HUANG et al. (1990),
a void in an elastic-plastic material will grow unstably when the mean stress reaches
Cyo, where the cavitation number Cy = 5.5 for a metal with the properties given in
Eq. (2). We have observed that the ratio K;/(a% h) designated by C remains nearly
constant with increasing loading and can be considered a property of the system,
depending primarily on E E (see Table 2). Combining the two results, we have

K= CSCNO'O\//L (12a)

and an equivalent relation for the critical nominal energy release rate takes the form

s [L=VDE
G = [C;C,‘Va‘)( “E »)}7“/1‘ (12b)

As an example. for a system having the properties given in Eq. (2). the result is
G, = 02a,h.

Suppose the crack geometry is joaded to the point where cavitation at 7>/ is
imminent. Using the values in Tables | and 2. and relations (11b) and (12b). we
estimated the critical nominal energy release rates required to drive mechanisms (1)
and (ii) for four material combinations. These are tabulated in Table 4 (the estimates
in the third column are based on values of | /d appropriate to g, = Cy04). Consider
the material combination given by Eq. (2), where G (0,X0) = 1.8 for coalescence
and G /(a,h) = 0.2 for cavitation. Since the operative mechanism is the one requiring

TaBLE 4. Comparison of critical energy release rates

Ge. Ge (aoh): critical ratio for triggering  cavitation,

G (0,Xy) : critical ratio for void coalescence. Ejay = 300,
v=033v,=02

EJE n GerloaXy) Geitaeh)
| 10 1.5 0.6
2 10 1.6 0.4
S 10 1.8 0.2
5 ° 1.2 0.1
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a smaller G, we conclude that high-triaxiality cavitation develops if 7/ X, < 9. while
the near-tip void coalescence mechanism is operative if h/Xy > 9. It may be noted
that the critical value of /1/ X, depends on E/E, as can be seen in Table 4.

The system parameter which affects the competition between the two mechanisms
is given by the ratio of the right-hand side in Eq. (12b) to that in (11b), 1.e., high-
triaxiality cavitation dominates if

Eh

[C5Cre(1—v])d] EX,

< 1. (13)

Since the quantities within the brackets depend only weakly on E,/E, we may conclude
that increasing the substrate stiffness, but keeping the other properties and the
geometry fixed, increases the likelihood of high-triaxiality cavitation.

The third mechanism is operative when the tensile traction across the interface
reaches the critical value C 0. Values for C,, the coefficient of adhesion. in the range
3-10 have been reported for inclusion matrix interface in steels and Cu-0.6%-Cr
alloy (ARGON and Im, 1975 ; CraLONE and Asaro, 1981). In the range r, > h, the ratio
K,/(c%,/h) designated by C, changes slowly with applied load and is nearly a system
property depending primarily on E,/E (see Table 2). Combining these results. we have

K/(‘ = C(\'C‘,,O’()\/h (]4a)
and
s (U=¥)E
Ge = [C_;C‘.s:u<( g Lﬂauh. (14b)

The competition between mechanisms (i) and (iii) can be quantified following the
above procedure. i.c.. interfacial debonding at » > / is operative if

Eh

[C%C::I”(]—\'\z)(?] E\X;) < 1. (IS)
Likewise interfacial debonding dominates over mechanism (ii) if
C\’C4
e < ] 16
C,Cy 1o

It warrants emphasis that G¢ in Eqs (12b) and (14b) corresponds to the critical
energy release rate for triggering the first cavitation and debonding respectivelv. For
example. REiMANIS and Evans (1991) have observed that before the ligament bridging
the first cavity to the crack tip ruptures, several arrays of cavities parallel to the crack
front nucleate in sequence as the applied load increases: more cavities are nucleated
after ligament rupture and the process repeats itself. Thus the value of Ge in (12b)
and (14b) as well as the fourth column of Table 4 are critical energy release rates for
initial cavitation and debonding and should not be regarded as the steady-state
fracture energies.

The material and system parameters that can affect the competition between the
three mechanisms are shown in Eqs (13), (15) and (16). The quantities within the
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bracketsin Eqs (13) and (15) are only weakly dependenton E/E. Thus the inequalities
in Eqs (13) and (15) show that increasing the substrate stiffness relative to the foil
stiffness favors the development of mechanisms (ii) and (ii1). Similarly decreasing the
layer thickness while maintaining the material properties of the system also favors
mechanisms (i) and (iii). When the substrate endures large stresses cleavage fracture
of the ceramic is a possible mode of fracture. For example, if the stresses necessary
for cavitation exceed the strength of the ceramic, failure by cleavage of the ceramic
may intervene.

6. CONCLUDING REMARKS

A variety of failure behaviors have been observed for ductile metal foils constrained
between elastic blocks. For material combinations and/or processing methods which
result in low-strength interfacial bonding, de-adhesion of metal-ceramic interface
accompanied by plastic deformation is the dominant separation mechanism. Systems
such as copper-glass (OH et al., 1987), platinum-alumina (DALGLEISH et al., 1988).
gold—sapphire (REMANIS et al., 1990), with respective testing conditions, appear to
belong to this type. For such systems, relatively large fracture energies compared with
the work of adhesion are usually measured, which may be attributed to the work
dissipated by the local plastic deformation in the metal foil. The nominal fracture
energy can be further enhanced by modifying interface geometry to encourage partial
debonding and large plastic stretching of metal foils (OH et al., 1988).

When the interface bond strength is high, the three mechanisms discussed in Section
5 as well as ceramic cleavage must be included as potential mechanisms. For
example. systems such as aluminum-alumina (DALGLEISH ef al.. 1989) and gold-
sapphire (REvaNis and Evans, 1991) develop failure modes described in (it) and (iii).
Indeed the high normal interfacial tractions that develop in gcometries of the type
depicted in Fig. | suggests that interfacial debonding as a dominant failure mode is
highly favored. The quantitative connection between the nominal fracture energy and
de-adhesion at large distances from the tip can be studied by using the de-adhesion
models investigated by NEEDLEMAN (1987) and VARIAS ¢t al. (1990a,b).

Constrained metal deformation is a generic feature for most ductile-brittle com-
posites. The metal foil bonded between ceramic substrates provides a convenient
experimental set-up for studying a variety of failure mechanisms. A way to evaluate
the multi-mechanism competition is to estimate fracture energy for each mechanism,
with the understanding that the mechanism requiring lowest fracture energy would
become operative. Along this line we have carried out an evaluation of the multi-
mechanism competition using the results of a full-field finite deformation analysis of
the metal foil crack geometry.

Several issues requiring analysis include the effects of mode mixity of the applied
load. residual stress, and de-adhesion of metal-ceramic interfaces on the distribution
of near-tip fields and interfacial tractions and on the elevation of the mean stress.
Such information is necessary for the interpretation of existing test data discussed
above. For example, our results for mixed mode loading show that significantly larger
plastic zone sizes r,/h are required to generate the range of stress triaxialities discussed
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in this paper. This means that the nominal fracture toughness under mixed mode
loading should be larger than that for mode I loading, assuming that failure is
governed by the same mechanism. Investigations along these lines are in progress.
Experiments should be conducted under mode [ remote load using pure metal foils
with high adhesion and low residual stress; such data are more readily interpreted.
These coordinated efforts would provide the necessary validation to ascertain cavi-
tation as a distinct failure mechanisms and the parameters that govern the competition
between the various mechanisms.
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APPENDIX A

Standard tensor notation is used throughout. Bold-faced symbols arc used to denote vectors
and higher-order tensors. the orders of which will be clear in context. Products are indicated
with dots and products containing no dots are diadic products. Latin indices range from one
to the number of spatial dimensions and repeated Latin indices are always summed. Inverses,
transposes and transposed inverses arc denoted with a superscripted — 1, 7 and — T, respec-
tively, and superposed dots indicate ditferentiation with respect Lo time ¢, For instance

AB=A,B bb. A:B=.18,.
cd = c,c;bb,, c-d=cd.
H:A = H,  Anbb,. A:H=,H,bb,

[

B:

B,
b, B-c = Byub.

P
¢

where the base vectors. b,. are Cartesian and independent of time.

Muterial constitutive relations

The delormation gradient is taken to be multiplicably decomposable into elastic and plastic
parts. via

F = 0x/0X = F*-F”, (A1)

where x is the current position of a material particle and X is its position in a reference state.
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F”is the deformation due solely to the plastic flow and F* is the remaining contribution to F
associated with clastic distortion and any rigid rotation of the matcrial. The velocity gradient
is of the form

L=F-F '=F*F* ' LF*Fr-Fr '-Fx-! (A2)

This leads to plastic and elastic parts of the rate of deformation D given by
D=sym(L)=D"+D*=F*-F’-F"~'-F*" ' fsym (F*-F*~ "), (A3)
while the spin W is only due to F* and is given by the relation '
W = skew (L) = skew (F*-F*~'). (A4)

The elastic response is expressed in terms of the Lagrangian strain E*, and the second Piola—-
Kirchhoff stress S*. which are defined by the following relations

E* = J(F*"-F*—]), (A5a)
S*=F*"'-¢-F* 7, (ASb)

where 1 = (det F)o is the Kirchhoff stress and o is the Cauchy stress. S* is the second Piola—
Kirchhoff stress on the intermediale configuration, which is obtained by applying the mapping
F7 to the reference configuration. A strain energy function, ®, is assumed to exist which requires

5= 22 (A6)
T CEX
In rate form the elasticity relations are
S* = K:E* K—J‘iq—)—bbbb (A7)
= H 5 “(-;E:';(ﬁET[ [athd S
In this study. the clastic potential ® is taken as
D= (ET +ELHEN) +u(EY + EX +EY)

M EL+EY) + (B +EX) + (BN +ET)] (A8)

where 4 and j are the Lamé constants.
The plastic response is specified by the low rule. which takes the form

D’ = irp. (A9)
where
3t
p= 5% (A10a)
=1 tr(7)l, (A10b)
67 =3t = J(S¥ - C*): (S* - C*). (A10c)
S* = S*— |(S*:C*)C* ', (A10d)

" and S* are the deviatoric parts of T and S*, respectively. C* = F*7+ F* is the elastic Cauchy-
Green tensor and é7 is the effective plastic strain rate. In the present work, power law material
strain rate sensitivity and strain hardening werce assumed in the form

=i 2 )" All
£" =&, ") (A1T)

We assume that H(&") evolves according to an isotropic hardening relation
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gp tn
H(E") = m,(l + ) : (A12)

o)

where i is a hardening exponent. g, is a reference stress, &, (= 64/ E) and &, are reference strain
and strain rate. respectively and m is the rate-sensitivity exponent.

The above constitutive relations can be combined to provide a relation between the rate of
the second Piola—Kirchhoff stress on the reference configurations, S=F'-7-F~ ", and the
rate of the total Lagrangian strain, E = YFT-F—1). Straightforward algebraic manipulations
lead to the following relations

EX =k T-E-FP~ ' —érA, (Al3a)
$* = F-S$-Fr’+2é'B, (A13b)
where
3 ,

A= (C*-S¥-C%), (Al4a)

L0

3
B = -—(S*-C*-S*). (Al4b)

26

Substituting relations (A13) into the first of the relations (A7), we finally obtain the complete
constitutive relation in terms of the rates of E and S

S=L:E-&Y. (A13)
where
L=Fy 'FI° "Kipg Fl LS 'b,b,b,b,. (A16)
and
Y=F '-K:A+2B}-F"". (A1)

Relutions (A 13) and (A15)-(A17) are similar to those developed for crystal plasticity (HARREN
et al., 1988 VaRIAS ¢f al., 1990a).

Finite element implementation

The ratc constitutive relation (A13) is implemented via the one step. explicit method of
Piercr: ef al. (1983, 1984). The increment of the effective plastic strain is defined by the

following relation. where a linear interpolation within the time increment is also employed
A = " (t+AD—E(1) = Ar[(1 — 0V + 08"} (A18)

The subscript denotes the time at which the plastic strain rates arc evaluated. The parameter
0 takes values from 0 to | ; 0 = 0 corresponds to 4 simple Euler time integration scheme. The
strain rate at time 7+ At is approximated by a Taylor expansion

SEn

. .oopEr o fEr
£l = 84+ o Ad+ o AT (A19)
I3 ¢
The increment of the cffective stress, &, is obtained from relation (A10¢)
AG = aAt = (Y:E)Ar— (R:A)AE", (A20)
where
R=K:A+2B. (A21)

A and B are defined by relations (A14). Combining relations (Al 8)-(A20), we get the expression
for the average plastic strain rate in the time interval Az



Ductile failure of a constrained metal foil 983

AEP 1] . i .
— = | &’ -(Y: A22
AT [F, +At0 o (Y E)], (A22)
where
IM=1+0A oer R:A cer (A23;
ST G KA ) )

The calculated average plastic strain rate is substituted into the constitutive relation (A15) and
its time discrete form is derived

) _gr
—Jan L g _ T 2
S=L%:E ¥ (A24)
where
0 gér
Lo = L—Ar— 2o yy, (A25)
1 ¢e

The quantities of relation (A24) are evaluated at time r. Relation (A24) is substituted into the
principle of virtual work.

To enforce equilibrium at the end of the time step, 1+ As, the principle of virtual work is
written in the reference configuration, viz.

J n’*A’:dFdV=J t' "4 Ju ds. (A26)
2 N

Here, V' is the reference volume and S is the part of its boundary over which tractions are
imposed. t = N - n is the nominal traction vector (N is the outward unit normal to the reference
volume boundary),n = F~'-t = S F" is the nominal stress and du is an admissible variational
displacement field that is compatible with the variational deformation gradient field, oF. The
explicit difference relation n'™% = n' +a'Ar as well as

n:0F = S': JE, OE = sym {(F")"- 0F}, (A27a)
n':0F = §:0E+ (S (F)7} : SF, (A27b)

is substituted into (A26) to obtain

ir 1 . o] ar.L s
i Y= =S 0EdV+ — | t+Y-5udS.
At S

SE-T W - B Q. (ENTY . 5 _
JV[oE.L B+ (S () ;‘()F]dV_J LY-

(A28)

Then the usual finite element interpolation and gradient operators are introduced to obtain a
linear system of equations. After applying the appropriate rate boundary conditions and
solving the resulting linear system of equations, the state at time ¢ is updated to time ¢+ Ar.
The spatial discretization is accomplished by using quadrilateral clements which are made up
of four cross triangles.

Mesh

The accurate examination of the problem shown in Fig. I, for the whole range of the applied
load was accomplished with the use of meshes with various h/b, ratios, where b, is the initial
notch opening. Calculations were performed for h/b, equal to 1400, 600, 200 and 40. Also Rih
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<\ [ 7 T
77
frsEtr e

b)
I
I h/2
—

c)

FiG. 10. Mesh used in the finite element caleulations. (1) Near-tip mesh. The displacement of point A
along the X.-axis is half the crack tip opening displacement. (b) The strip represents half of the metal foil.
(¢) Far-field mesh. The clastic K;-ficld is applicd along the outer circular boundary.

was Laken equal to 160 and 500. Ris the radius where the clastic K-ficld is applicd. Figure 10
shows the kind of mesh used in these calculations. Although our finite clement calculations
were done for different notch sizes compared to the layer thickness. the results are valid for
the problem of a sharp crack, when the notch opening equals three o four times its initial
value. This approach is in agreement with the finite clement calculations of MCMEEKING (1977),
who modeled the blunting of an initially sharp crack using a notch. It was also justified by our
calculations since the final results of one geometry were the same as the initial results of the
subscquent geometry. For example the distribution of the ficld quantities at the end of the
calculations for h/by = 1400 were coincident with those calculated at the beginning for
hib, = 600. The comparison was done after substantial blunting of the notches and for the same
value of K /(g

APPENDIX B
Maximum mean stress and plastic zone size

Analytic cstimates of the maximum mean stress and the plastic zone size, when it satisfies
the relation r, » A, have been derived. The derivation is elementary, when the characteristics
of the distribution of the field quantities, observed in the finite element solution, are taken into
account. The uniform through the layer thickness distribution of the field quantities at distances
r » I due to the very gradual variation of the K-field with respect to h simplifies the problem.
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We may simply consider the deformation of a thin ductile layer of infinite length, bounded by
infinite clastic materials, on both sides. The layer material has yield strength g, Young's
modulus E and Poisson's ratio v. The elastic substrates have Young’s modulus £, and Poisson’s
ratio v,. Superscript or subscript s denotes quantities of the substrates. No subscript or
superscript is used for the layer quantities. Plane strain conditions are considered. Taking into
account that @, is equal to 7, and @, vanishes at the crack ligament in the homogeneous
material mode [ K-field. we impose the following conditions for the stresses in the substratcs

o =0n=0 0,=0 (BI)

7y, Is derived from the plane strain conditions. The continuity of the tractions and the
displacements across the interfaces together with the uniform distribution of the field quantities
in the layer leads to the following relations, valid in the layer

01y = 0, g, =0, & =&}, (B2)

The mean stress in the layer before yielding is given by

N

1 l E N
- =y —y2
G ) (l+v)+E (1—v, _\\):,a. (B3)

The layer mean stress increases with the ratio E/E,. The same trend was also observed for the
maximum mean stress in the actual problem, with important consequences in the opening of
the crack and the cavitation phenomenon. Taking into account that the maximum mean stress,
., develops at a distance 1-34 from the crack lip in a region of plastic strains of the order of
the elastic strains, we may drive an estimate of K//(aX\ 1) by simply setting 0 = Kii i

Ko 30ewyem (B4)
(;,’:\//1 1+V+(E/E\)(I —\’\—2"\-)
Relation (B4) is in very good agreement with finite element solution (see Table 2). Therefore
it can be used for an estimation of the critical value of K. which triggers cavitation.
The layer yields when the effective stress becomes equal to ¢,. An approximate rclation for
the plastic zone size of the actual problem can be obtained when ¢ is set equal to K,/\/(2nr,)
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0.010 Fr e , .
01 02 03 04 05 08 07 08 08 10

FiG. I1. Variation of r,/(Kife,)* vs E/E,, when r, > h. The proportionality constant shows a minimum for
a value of E/E,, which is a function of the Poisson ratios of the materials.
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P )
where
I (1=y—2 3)_5(1_»_}3) (B6a
l—\‘) v—2v E Us—2V7) | )
(l—v=2%)— £ v(l=v,—2v2) (B6b)
]—V ) - Ev v '
itk 0 (B

The variation ofr,,/(K,/aO)“ with E/E, is shown in Fig. 11, for v, = 0.2 and v = 0.33. The plastic

zone increases with a minimum rate when £/E, = 0.54. Relation (BS) is compared with finite
element solution in Table 3.



