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ABSTRACT

RESISTANCE to delamination in composites can be enhanced by a variety of bridging mechanisms. The
bridging zone size is usually several times the lamina thickness, so it is questionable to think of delamination
resistance as a material property independent of specimen size and geometry. When measured with slender
beams, the plateau resistance is found to be independent of the beam thickness. However, the steady-state
bridging zone sizc increases with the beam thickness. Further implications of the large-scale bridging are
studied’using a family of steady-state, mixed-mode delamination beams, in conjunction with an idealized
damage response. The complete solution is obtained for the model, which allows the R-curves to be
constructed for given model parameters. The significance of the steady-state cracking, which is crucial in
understanding delamination R-curves, is elucidated by contrasting double-cantilever beams loaded by
moments and by wedge forces. As an inverse process, it is recommended that R-curves be used as an
experimental probe to study localized damage response, such as polymer craze and interface separation.

1. INTRODUCTION

OVER THE last decade, it has been increasingly evident that the toughness of brittle
materials can be enhanced by bridging mechanisms. The mechanics language that
describes this is resistance curves (R-curves) : toughness increases as a crack grows.
Many material systems have been tested and modeled. In polycrystalline ceramics,
grains that cross over the crack faces are responsible for the toughness much higher
than the surface energy of the corresponding crystals (VEKINIS et al., 1990). Bridging
in ceramics can also be supplied by reinforcements such as high-strength fibers, metal
particles and networks. A perspective for these toughening approaches is provided by
Evans (1990). The R-curve behaviors are discovered in metallic adhesive joints, where
much energy is absorbed by periodic arrays of cavities growing under constrained
plastic flow, and the intact metal patches provide the closure force (REMANIS and
EvaNS, 1990; VaRIas et al., 1990). Such cavities can also be etched on the substrate
surfaces prior to bonding (OH et al., 1988). For ceramic powder compacts in the
green state, fracture resistance largely originates from bridging particles.

Attention here is focussed on the delamination of unidirectional or laminated
composites. A comparative literature study shows that, for both polymer and ceramic
matrix composites, bridging is usually due to unbroken fibers left behind the crack
front, while the crack switches from one fiber—matrix interface to another as it
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propagates (Lucas and ODEGARD, 1990 ; SBAIZERO et al., 1990). Additional resistance
for polymer matrix composites comes from damage in the form of voids, craze or
micro-cracks (CHal, 1988 ; BRADLEY, 1989 ; Su, 1990). Three-dimensional architecture
of threading fibers can also give rise to substantial fracture resistance (BYun er al.,
1990). Impressive micrographs showing various damage behaviors can be found in
these papers. R-curves have been measured for several polymer and ceramic laminates,
e.g. DE CHARENTENAY et al. (1984), HasHEMI et al. (1990), and SPEARING and EvaNs
(1990).

In contrast to atomic cohesion that occurs over a multiple of the lattice spacing
with huge stresses, most bridging mechanisms are characterized by small stresses (5
MPa, say) operating over a large separation (0.1 mm, say). Consequently, as a
prerequisite to significant toughening, a large-scale bridging zone must develop ahead
of the pre-cut. In laminates, the fiber bridging zone length is typically several times
the lamina thickness. From the viewpoint of material characterization, R-curves are
no longer a material property, since they depend on specimen size and geometry. We
favor an approach that regards the bridging response, a homogenized nonlinear
traction-separation law, as a basic material property. The law can be obtained by
either modeling or testing with laboratory samples, and subsequently used as input
data to predict the response of more complicated structures.

Large-scale bridging concepts have been explored by Mar and Lawn (1986), Zok
and Hom (1990), and BAo et al. (1990). Studies up to date have suffered from the
complexities caused by specimen geometries, mode mixity and damage response. The
intent of this paper is to investigate the delamination resistance using simple, yet
representative, specimens and damage response. Several generic features unique to
delamination R-curves are identified. Experimental procedures are proposed to infer
the bridging law from the testing data.

2. BasiC MECHANICS
2.1. A family of steady-state, mixed-mode delamination beams

Consider a beam with a pre-cut, loaded at the edges by moments or axial forces
(Fig. 1). Owing to the symmetry, mode I and mode II can still be unambiguously
defined under the large-scale bridging: the loadings that do not induce sliding are
mode I [Fig. 1(a)], and the loadings that do not induce opening are mode II [Figs
1(b) and (d)]. A mixed mode is obtained by superposition of the four basic loadings
[see also Fig. 1(c)]. Examples include four-point flexure and crack-lap-shear. A more
general family of steady-state delamination specimens with cracks off the centerline
in orthotropic materials has been analyzed in Suo (1990). To elucidate the basic
mechanics, mode I is discussed in this and the next section. Mode II and the mixed
mode will be studied in Section 4.

The damage is assumed to be localized in a planar zone ahead of the pre-cut front,
to be consistent with the experimental observations for most brittle matrix composites.
The damage zone size L can be comparable to, or larger than, the beam thickness A,
but the pre-cut and beam are much longer, so that the geometry is fully characterized
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FiG. 1. Family of delamination beams. The damage zone is an addititional energy dissipater. The geometry
is specified by L/h. Mixed-mode loadings can be obtained by the superposition of these basic cases.

by the ratio L/h. In Fig. 1(a), the global energy release rate equals the J-integral over the
external boundary, and measures the magnitude of the applied load (RICE, 1968) :

G =CM>, C=12(1—-v)/ER, (1

where M is the applied moment per unit width, C the beam compliance, 24 the
thickness, E the Young’s modulus, and v the Poisson’s ratio. The material is assumed
to be elastically isotropic and homogeneous, and plane strain conditions prevail. The
subscript I indicating mode [ is dropped. Observe that ¢ does not depend on the crack
size, nor on the damage zone (size, constitutive law, etc.). This prominent feature suggests
an experimental procedure to measure the damage response, as will be described at the
end of this section.

The pure moments, for example, can be applied to arms bonded to beams, a
design that has been used for electronic ceramics (PoHANKA and SMITH, 1988). Other
specimens that feature the steady state include double torsion (VEKINIS ez al., 1990),
four-point flexure (CHARALAMBIDES ef al., 1989), edge delamination (O’BRIEN, 1987),
and a bilayer held in rigid grips (LIECHTI and CHal, 1990). They are all suitable for
R-curve measurement.
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2.2, Essential features of delamination R-curves

Phenomenological delamination R-curves are shown schematically in Fig. 2. Focus
on a R-curve of a given beam thickness, say, h,. The specimen can sustain the
increasing moment, without appreciable damage ahead the pre-cut front, up to a
critical point corresponding to 4,. Subsequently, the damage zone size L increases
with the applied moment M, leading to an increasing curve of resistance ¥. The
damage zone may attain a steady state : it maintains a self-similar opening profile and
a constant length L,,, translating in the beam, leaving behind the crack faces free of
traction. Correspondingly, a plateau, 4., would appear on the R-curve. We observe
that the steady-state large-scale bridging is unique to the slender beams. Most other
specimens, such as edge-notched specimens, do not admit the steady state when the
bridging zone is comparable Lo the specimen size. As a convention, the current crack
front is identified with the damage front, and therefore the R-curve is the same as the
% oL plot. For the fiber cross-over, the damage front is indeed the crack tip, and can be
observed in experiments. But, for ductile damage, this convention may cause ambiguity
in experiments, and much care is demanded.

. To proceed further, the DucGDALE (1960) model is invoked, which, in its generalized

form, simulates the homogenized damage response with an array of continuously
distributed, nonlinear springs. Specifically, at each point in the damage strip, the
closure traction o depends locally on the separation 0

o = a(J). (2)

The functional form is specific to the damage, but is assumed to be identical for every
point in the damage strip, and independent of the specimen geometry. A maximum
separation J, exists, beyond which the closure traction vanishes. The spring laws may
be measured or modeled using simplified systems [e.g. ASHBY el al. (1989), Bao and
Hut (1990), BUDIANSKY el al. (1988), and Evans (1990)]. They can also be inferred
from experimental R-curves. The latter is the major theme of this paper.

The following energy balance is due to the J-integral conservation (RICE, 1968) :
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FiG. 2. Two generic features of delamination R-curves. The plateau %, is independent of the beam thickness
h. The steady-state damage zone size Ly increases with A.
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0
where § is the end-opening of the damage zone, or the separation at the pre-cut tip.
We will not distinguish the driving force ¢ and the resistance %, hereafter, as they
can be judged from the context. % indicates the applied load level as shown in (1),
and %, is the energy dissipated at the damage front. They will be referred to as the
global and the local, respectively. The difference in (3) is the energy to create the
damage. The steady-state resistance %, is attained when the end-opening reaches the
critical separation, 5 = &,. Thus, from (3) 4,, equals the sum of ¥, and the area under
the o(8) curve. The plateau %,, does not depend on the beam thickness, and is therefore

a property for a given laminate.

But how long will the damage strip develop before the steady state is attained? The
steady-state bridging zone size, L, indicates the quality of a bridging mechanism :
toughness gained from too long a damage strip may not be useful in practice. From
other perspectives, however, a long damage zone might be desirable. For example,
the larger scales may help the experimental studies of damage response. Both the
bridging mechanism and the specimen geometry affect L,. Bridging mechanisms with
small tlosure stress operating over a large separation result in a large L. A thicker,
stiffer, beam is more constrained against deflection, and thus exhibits a larger L. The
latter is indicated in Fig. 2. These features are independently observed in an experiment
with a unidirectional ceramic composite by SPEARING and Evans (1990).

Equation (3) suggests an experimental procedure to determine the damage response.
By continuously measuring the end-opening &, togther with the R-curve, the spring
law is given by

0(8) = 0%4/60. 4)

This is obtained by differentiating (3). The intrinsic resistance %, is assumed to be
independent of the damage accumulation. This method by-passes the complexities of
large-scale bridging. However, this method is not applicable for specimens that do
not admit the steady state. For those specimens, %, the J-integral over the external
boundary, depends on the details of the bridging law, and therefore can only be
calculated after the law is known. Further discussions are given in Section 5. Large-
scale bridging may serve as an experimental probe for studying localized (planar)
damage response, such as polymer craze and interface separation, when uniform
separation over a sample is difficult to accomplish due to the instabilities triggered by
inhomogeneities and softening (Suo et al., 1990).

3. OPENING MODE R-CURVES

To gain quantitative insight, we analyze an idealized damage response shown in
Fig. 3. The closure traction o is related to the separation ¢ via

o =0y+S50, (5

where S is the spring stiffness, and o, the yield stress. A limit separation, d,, is specified
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F1G. 3. Three-parameter damage response.

to represent the reinforcement necking or fiber breakage, so that the closure stress
vanishes when & > &,. This three-parameter response embodies models representative
of a variety of damage behaviors. For example, S = 0 gives the rigid plasticity typical
of ductile reinforcements. Hardening and softening are represented by S > 0 and
S < 0, respectively. Linear springs are recovered by ¢4 = 0.

The energy balance (3) becomes

G =G, +0,6+55%2. (6)

The plateau resistance ¥, is obtained when § = &,. A key nondimensional parameter
is the effective stiffness ratio of the spring to the beam:

T = SL*C. 7

3.1. General solution

The nonlinear spring law (5) is analogous to that for residual stress problems, and
can be treated by an Eshelby-type superposition (Fig. 4). The problem in Fig. 4(a) is
trivial : displacement is everywhere zero, and the only nonzero stress is in the spring,
bjigg 0. The coupled spring-beam system in Fig. 4(b) is purely linear, so that d and
%, are linear in gy and M :

% i
t t ¢ i
a) T T \ nc;r;l:ir::egar
1 v ovov G=558+G,
M (’ G
b) Y linear
S—L___ spring
M ( G=S3

FiG. 4. Eshelby-type superposition procedure to reduce the nonlinear system to a pure linear spring-beam.
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§=a,L’CM~a,L*Ca,, (8a)
J%y = a5 /CM—a,L*/Ca,. (8b)

A somewhat arbitrary normalization is chosen so that the as are dimensionless. These
coefficients should be determined by solving the elasticity problem rigorously.

It can be shown that g, depends only on L/A and X. The amount of calculation was
significantly reduced once we noticed three relations:

ay = a,/2, a;=(1 —Zaf/Z)”z, a, = (1 —as)/Z. 9

Thus, once a, is known, so are the other three coefficients. These relations are derived
by substituting (8) into (6); the result is a quadratic in ¢, and M being identically
zero. This in turn implies that all three terms in the quadratic vanish, leading to (9).

The coupled beam-spring system in Fig. 4(b) with M # 0 but ¢, = 0 is analyzed
with over 300 runs of a finite-element analysis, within the applicable parameter regime.
The computed coefficient a,, depending on X and L/h only, is fitted by

a,=Aexp[—BZ(Z+Zy) ",

A = 1+1.325(h/L) +0.35(h/L)?,

B =0.3534+0.374(h/L) +0.373(h/L)* - 0.23(h/L)",
¥, = 6.127 exp [— 2.586(h/L) +0.564(h/L)?]. (10)

Figure 5 plots the finite-element data points and the fitting curves.
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FiG. 5. Finite-element results and fitting curves for a,.
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In summary, (6)-(10) are all one needs to construct R-curves when the model
parameters are known [mathematically, only two among (6), (8a) and (8b) are
independent]. Specifically, the R-curve, the ¥—L plot, is given by (8b), with M related
to % via (1). With 0 = §,, %,, is determined by (6), and L,, from (8a). These can be
coded with a short computer program. Special cases will be discussed in the next two
subsections to gain a quantitative feel. Below we digress to present a few interesting
results.

The exact asymptote as L/h — co is obtained using the classical theory of beams
on elastic foundations [e.g. DEN HARTOG (1987)] :

cosh? &£ —cos? ¢
&*(cosh? E+cos? &)’
2 sinh £ sin &
E*(1+cosh & cos &)’

E=E", >0,

a, () = (1)

E=(=2%)"¢, ¥ <0.

Only positive spring stiffness is considered in the book, but a slight modification solves
the softening springs. This asymptote is plotted on Fig. 6. Note that infinite and
negative deflections appear for softening springs. The first instability occurs at
¥ ~ —6.181. A similar behavior appears for finite L/h, but, for the present problem,
only the results up to the first instability for each L/h are reported in Fig. 5.

Below we derive an approximate relationship between L, and A, which indicates
that L, indeed increases with 4. At the steady state, except for a,, a, and L*C, all

T T r T T T T T T T T+ 7T 1 T

FiG. 6. Plot of a,(Z,L/h = c0). Infinitely many instability points exist in the regime = < 0. Only the first
two are shown.
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other quantities in (8a) are material parameters. For fixed X, a, does not vary
significantly for large L/h, neither does a, due to (9). Hence the combination L*C
solved from (8a) is almost independent of A, so that for a given composite

L,ocC™ " or Lyoch’™ (12)

The relation becomes accurate for large L, /4. This strong thickness dependence is
observed in experiments with a unidirectional ceramic composite (SPEARING and
Evans, 1990).

3.2. Rigid plastic bridging

Two examples are given to illustrate how the theoretical results contained in this
paper can be used, in conjunction with experimental R-curves, to characterize com-
posites. It is appreciated that R-curves themselves are not adequate to characterize
materials, since they are specimen-dependent. But they contain the information on
model parameters, such as yield stress, maximum separation and stiffness, which can
be regarded as material properties. The strategy is to extract these parameters from
the experimental R-curves, and use them as part of the material data base to predict
structural behaviors.

Consider first the case S = 0 suitable for ductile reinforcements. The response is
specified by two parameters: the yield stress oy, and the maximum separation d,. The
steady-state toughness is given by

gss = g(}+0050~ (13)
With £ = 0, (8) takes the limit
2
=~ 5 aj 1
o0=a,L C.@—XL Cay, (14a)
Jb = G+ 5 /CL, (14b)

Now a, equals A4 in (10).

The quantities %,. %,, and L, can usually be measured from fracture tests. Using
these, the model parameters o, and J, can be inferred from (13) and (14). To gain
some feel for the magnitude, R-curves defined by (14b) are plotted in Fig. 7 in a
dimensionless form. The plateau %,, in (13) should be a horizontal line independent
of h and L (not shown in Fig. 7).

3.3. Softening bridging

The case S < 0 is thought to be appropriate to represent the fiber cross-over. As
the crack opens, the fibers are peeled off from the matrix, and the closure traction
diminishes. The negative stiffness depends on the number of the cross-over fibers, and
on the adhesion between the fibers and the matrix. Our model is specified by two
parameters g, and dy, with § = —0/d, (inset of Fig. 8). The model is also applicable
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FI1G. 7. Dimensionless R-curves predicted using the rigid plastic damage response (mode I).

for debonding ductile reinforcements (Bao and Hut, 1990). The plateau resistance is
given by
Gy =G+ 10000, (15)
The R-curves are given by (8b) once the model parameters are given.
Now we focus on the inverse problem: how to infer g, and J, if an R-curve has

been measured. With ¢, and ., read from the R-curve, (15) gives the product ¢,J,.
to determine S, (8) is specialized at the steady state:

gs:/;go = a%\- (16)

This equation is plotted on Fig. 8. With L also read from the R-curve, S can be
obtained from the plot. This procedure is currently being used in the experiment by
SPEARING and Evans (1990).

4. Mobpe II AND MIXED-MODE R-CURVES

4.1. Pure mode 11

Now & represents the crack sliding, and o the shear traction that opposes the sliding.
The three-parameter damage response in Fig. 3 is assumed. Consider first the loading
case in Fig. 1(b). The mode II global energy release rate is
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Fic. 8. Insert shows a two-parameter softening damage response. The plot is used to infer the negative
spring stiffness S. With 4,,, ¢, and L,, from an R-curve, S can be read from this plot.

4 =DM?>, D =9(1—v)/Eh’. (17)

The conservation of the J-integral (6) still applies, which connects the global and local
energy release rates with the end-sliding, 0. Linearity and dimensionality imply that

§=b,Lh\/D/%—b,L*h* Da,,
% = bs/G—b,Lh/Do,. (18)

The dimensionless coefficients b, depend on L/h and & = SL*A*D only. Relationships
in (9) are still valid for the bs, with Z replaced by X’. For a given material, it can be
shown that L oc 1" is approximately valid for large L,,/A.

For the loading case in Fig. 1(d), the energy release rate is

4 = 1(1—v})P?/Eh. (19)

Equation (18) still applies, with identical bs. This is because b, and b, are coefficients
related to o, alone, and because (9) is valid for both moments and axial forces.
Consequently, the R-curves are identical for the loadings in Figs 1(b) and (d). The
same is true for any linear combinations of the two loadings. This remarkable con-
clusion results from the simple damage response we have assumed here, but might be
valid approximately for arbitrary damage response.
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F1G. 9. Dimensionless R-curves predicted using the rigid plastic damage response (mode II).

For rigid plastic springs (S = 0). (9) reduces to b, = b3/4, by=1, by=15b,/2. The
coefficient b, is extracted by solving the boundary value problem with finite elements,
and the results are fitted by

;
+0.28 2. (20)

b1= L

b

The error is less than 1% when L/h > 0.5. Dimensionless R-curves are plotted in Fig.
9. A comparison with Fig. 7 shows that a much longer damage zone is typically needed
for mode II than mode I to attain the same level of toughening. This is consistent
with the experimental observations of BRADLEY (1989) with unidirectional polymer
composites.

4.2. Mixed mode

Mixed-mode specimens can be obtained by the superposition of the basic loadings
in Fig. 1. Consider a simple case that the spring laws are decoupled : opening does
not induce shear traction, and vice versa. While this damage response cannot be
defended rigorously on a physical basis, it does shed some insight into the subject.
The R-curves for the two modes are independent of each other, and each evolves in
accordance with the mode I or mode II as computed previously. Ambiguity exists to
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specify the mode mixity : the local mode mixity, %,0/%o, 18 in general different from
the global mode mixity, %,,/%,, since toughening ratios for the two modes are different.
The lengths over which the separation and sliding bridging operate are not necessarily
the same.

Another situation can be treated readily. Let , and , be the opening and sliding
displacements across the crack, and g, and 7, be the normal and shear tractions
opposing the crack growth. Suppose that the bridging response can be described by
a displacement potential #(9,,0.,), such that

d¢ =0,do, +1,,dd,, ¢(0,0) =0. (21
An application of the J-integral gives
G =% +0(5,, 0. (22)

Here &, and &, are the opening and sliding at the pre-cut tip, and %, is the energy
dissipated at the damage fronts (note the opening front can be different from the sliding
front). For the special case that 4, = 0, (22) suggests an experimental procedure to
determine the poténtial ¢ by measuring the delamination resistance % and the opening
and sliding at the pre-cut tip.

5. MOMENTS vs FORCES

Figure 10 illustrates a double-cantilever beam loaded by a wedge force, P, per unit
width. This is a specimen with no steady state, and a contrast will be made between
pure moments and wedge forces to elucidate the complexity. The J-integral over the
external boundary now depends on the crack length and the details of the damage
zone, which can only be obtained after the coupled, nonlinear spring-beam system is
analyzed. This is not convenient in practice, and probably not meaningful for material
characterization. Instead, as a convention, the load is converted to the nominal energy
release rate as if the damage zone were absent, and the fictitious crack front coincides
with the damage front. An accurate calibration for the double-cantilever beam without
damage is given by WIEDERHORN et al. (1968)

4 = C(P)*(1+0.67Th])*. (23)

When damage is present, this 4 does not equal the J-integral over the external
poundary. Consequently, (3) does not apply here.

To illustrate a few points, the rigid plastic response is analyzed. The linear super-
position of the stress intensity factors gives

Jé=J%+ %‘—\/E'Lzao. (24)

This is identical to (14b), with the same coefficient a, provided that (/— L) exceeds a
few times A. Thus the R-curves due to the incipient damage (i.e. & < &) are identical
to those for pure moments in Fig. 7.

The end-opening is
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FiG. 10. Insert shows a double-cantilever beam loaded by wedge force. An R-curve consists of two stages:
incipient damage 4B when § < 8, and fully developed damage BC when § = 4.

§=cl>/C%— %L“‘C(fo. 25)

Compared with (14a), the coefficient ¢ (not presented in the paper) now depends on
I/h and L/h, and is determined by the deflection due to wedge forces instead of
moments.

No steady-state is anticipated, since the translation self-similarity does not exist for
the wedge force loading. The fracture resistance ¢ and the damage zone size L keep
changing as the damage strip translates in the beam, maintaining & = J,, and should
be solved from (24) and (25) as a set of nonlinear algebraic equations.

Consider model parameters and specimen geometry specified by

% (L—v*)ho, lo

= =0.099, —-=3
500, 0, 5.E 0.099, p , (26)

where /, is the initial crack size. The R-curve is plotted in Fig. 10, together with the
pure-moment result ¥, = 3,0, (the dashed line). Curve AB corresponds to the incipi-
ent stage 0 < J,, and curve BC corresponds to 8 = d,. The damage zone size Ljh is
also indicated at three points. Observe that both 4 and L decrease as the damage
strip translates. The nominal resistance thus determined overestimates what would be
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experienced by a real delamination typically under a steady-state driving force. How-
ever, Fig. 10 shows that these deviations are insignificant if //A is sufficiently large and
L/h small.

The above conclusions are broadly consistent with the experimental findings with
a unidirectional glass—epoxy composite, where fiber bridging was observed (PREL et
al., 1989). Specifically, a plateau of 515 J/m?® was reached for a thin beam, whereas a
continuous increase up to values in excess of 1000 J/m? was recorded for a beam a
few times thicker. We feel our model is adequate to correlate the delamination R-
curves ; an experimental validation is in progress (SPEARING and EvaNs, 1990).

6. CONCLUDING REMARKS

As illustrated in Fig. 2, two essential features on the R-curves for slender beams
are (a) the plateau %, remains constant for different beam thicknesses, and (b) the
steady-state damage zone length L increases with the beam thickness. A family of
steady-state, mixed-mode delamination beams is recommended to study large-scale
bridging phenomena. Because the R-curves depend on the specimen geometry, we
favor the characterization of materials using bridging laws, instead of the R-curves.
Two experimental procedures are proposed to infer the bridging laws. One requires
continuous measurement of the opening of the pre-cut tip and the R-curve, but does
not require any a priori knowledge of the bridging law. For the other procedure, the
damage response is characterized by a three-parameter spring law, and the parameters
are inferred using quantities read from the R-curve only. From the point of view of
structural design, corresponding analyses are needed for other important geometries.
The effect of mode mixity merits further study. Elastic anisotropy may play an
important role which has been ignored in the present paper. The conception of using
large-scale bridging to study localized (plane) damage response requires experimental
validation.
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