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ABSTRACT

WE sTUDY cracks either in piezoelectrics, or on interfaces between piezoelectrics and other materials such
as metal electrodes or polymer matrices. The projected applications include ferroelectric actuators operating
statically or cyclically. over the major portion of the samples, in the linear regime of the constitutive curve,
but the elevated ficld around defects causes the materials to undergo hysteresis locally. The fracture
mechanics viewpoint is adopted —that is. except for a region localized at the crack tip, the materials are
taken to be linearly piezoelectric. The problem thus breaks into two subproblems: (i) determining the
macroscopic field regarding the crack tip as a physically structureless point. and (ii) considering the
hysteresis and other irreversible processes near the crack tip at a relevant microscopic level. The first
subproblem. which prompts a phenomenological fracture theory. receives a thorough investigation in this
paper. Griffith’s energy accounting is extended to include energy change due to both deformation and
polarization. Four modes of square root singularities are identified at the tip of a crack in a homogeneous
piezoelectric. A new type of singularity is discovered around interface crack tips. Specifically, the singu-
larities in general form two pairs: r ' 2ot and ¢ ' 2%, where ¢ and x are real numbers depending on the
constitutive constants. Also solved is a class of boundary value problems involving many cracks on the
interface between half-spaces. Fracture mechanics are established for ferroelectric ceramics under smally
scale hysteresis conditions. which facilitates the experimental study of fracture resistance and fatigue crack
growth under combined mechanical and electrical loading. Both poled and unpoled ferroclectric ceramics
are discussed. ;

1. INTRODUCTION
1.1. Piezoelectricity and ferroelectric ceramics

PIEZOELECTRICS deform when subjected to an electric field and polarize when stressed:
The stress o, strain 7, electric induction D, and electric field £ obey the constitutive
relations
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F1G. 1. Idealized ferroelectric hysteresis consists of two piczoelectric branches. Py is the spontancous
polarization and E the coercive field. A crack intensifies stress and induction, causing local hysteresis and
possibly fatigue. The sample is piezoelectric outside the small hysteresis zone at the crack tip.

06=Cy—eE, D=c¢E+ey, (1.1)

where Cis the elasticity, ¢ the permittivity and e the piezoelectricity ; these tensors are
material-specific. For example, quartz is piezoelectric, with the physical constants on
the orders

C~10"N/m* &¢~10"F/m, e~ 10"'C/m’. (1.2)

Ferroelectrics belong to a subgroup which, when in the form of a single domain,
possess a spontaneous polarization that can be reversed by applying a high electric
field. the coercive field. Most ferroelectrics are also linearly piezoelectric when oper-
ating around the spontaneous polarization. Figure | illustrates the idealized ferro-
electric behaviors, switching between two piezoelectric branches. Since the 1940s,
these properties have been exploited to produce polycrystalline piezoelectrics : macro-
scopic polarization is induced in ceramics by applying a high static field. which
partially aligns the polar axes in the randomly oriented domains, a process called
poling. The physical constants for poled barium-titanate (BaTiO;) and lead-zirconate-
titanate are on the orders

C~10"N/m’, ¢~10 *F/m, e~ 10C/m’. (1.3)

Both ¢ and e for the ceramics are substantially higher than for quartz. Unpoled
ferroelectric ceramics do not have macroscopic piezoelectricity but still have large
permittivity, so they make good capacitors.

A dimensionless group is formed by the three types of moduli, varying for most
materials in the range
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e/\/eC = 0.1-1. (1.4)

This number indicates the degree of the electromechanical coupling.

Books that contain the background information include FATUZZ0 and MERZ (1967)
on domain walls, JAFFE et al. (1971) on ceramics processing, POHANKA and SMiTH
(1987) on fracture testing and polymer matrix composites, and MIKHAILOV and
ParRTON (1990) on electroelasticity.

1.2. Cracking and fatigue

Ferroelectric ceramics are brittle (toughness ~ 1 MPa m'?) and susceptible to
cracking at all scales from domains to devices. When a ceramic is poled by a static
field on the order of MV/m, cracks nucleate to relax the incompatible strains (CHUNG
et al., 1989). Ferroelectric thin films can sustain high fields without electric breakdown,
but may delaminate from the substrate, or crack laterally. Actuators are usually
layered with substrates, or embedded in polymer matrices. Interface debonding
degrades the electrical performance. Many static and cyclic failure behaviors in multi-
layer actuators are described by WINZER er al. (1989).

There has recently been a resurgence in the effort to develop non-volatile memory
devices based on ferroelectric hysteresis. The major material challenge has been
fatigue : the hysteresis loops diminish with the cycling. Many fatigue mechanisms have
been postulated. Microcracking is one mechanism responsible for fatigue, which grows
with cycling, forming micro-capacitors. Another mechanism involves a-domains that
grow from the surface and hinder the motion of 180 domain walls (HAYASHI et al.,
1964). The stress state plays an important role in these mechanisms, as shown by HE
et al. (1991). PaN et al. (1989) found that the number of cycles to failure can be
greatly increased by carefully polishing the ceramic surfaces prior to electroding.

Ferroelectric hysteresis degrades materials even if samples operate nominally in
the linear piezoelectric regime. Under an alternating low amplitude field, the field
concentrated around defects can cause materials to undergo hysteresis locally. Fatigue
crack growth is likely, although no systematic study has been made. We will develop
a mechanics framework to evaluate fatigue crack growth under small-scale hysteresis
(see Fig. 1). The terminology will be borrowed from fatigue crack growth in metals
under small-scale yielding conditions, although the underlying physics may be entirely
different for the two phenomena.

Fracture testing has been conducted for ferroelectric ceramics (POHANK A and SMITH,
1987 FREIMAN and POHANKA, 1989). Ordinary fracture mechanics ignoring piezo-
electricity has been used to interpret data. One theme of this paper is to introduce the
electric intensity factor K. analogously to the stress intersity factor in the usual
fracture mechanics, as a correlating parameter, so that failure testing can be inter-
preted in the full range of mechanical and electrical loadings. A second theme is to
analyze interface cracks for applications in multilayer actuators.

1.3. Boundary conditions

Cracks in piezoelectrics have been investi gated as an electroelastic problem by several
authors. Contributions of the Soviet scientists have been reviewed by MIKHAILOV and
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PARTON (1990). PARTON (1976) took a crack to be a traction-free, but permeable,
slit—that is, the potential and the normal component of the induction are continuous
across the slit

¢ =¢ . DS =D,. (1.5)

These boundary conditions cannot be defended on physical grounds. Specifically, for
piezoelectric ceramics, the permittivity is 10* times higher than the environment (e.g.
air or silicone oil). A crack may be thought of as a low-capacitance medium carrying
a potential drop.

DEEG (1980) and Pak (1990) proposed another set of boundary conditions on the
crack :

D =D, =0. (1.6)

Two assumptions are involved. namely : (i) no external charge resides on either crack
face, and (ii) the electric induction in the environment is negligible. On the basis of
these boundary conditions, Pak (1990) studied a crack with its front coincident with
the poling axis, and Sosa and Pak (1990) investigated the more general crack tip field
using an eigenfunction analysis. SHINDO ¢f al. (1990) analyzed cracks in piezoelectric
layers using integral equation methods. Kuo and BARNETT (1991) carried out an
asymptotic crack tip analysis, and found various singularities depending on the crack
face boundary conditions, for an interface crack between bonded piezoelectrics. The
allowable singularities differ in one respect from those associated with the elastic
interface cracks, which we shall illustrate in the present work.

In his calculation of the electrostrictive stress near a crack tip, MCMEEKING (1989)
pointed out that (1.6) may not be appropriate for small crack opening. He modeled
the crack as an elliptic flaw with lower permittivity. The parameter

(8,/8”1)(0//7) (17)

emerges, where ¢,and ¢,, are the permittivities of the flaw and the matrix, respectively,
and « and b are the semi-axes of the ellipse (¢ > b). Assumption (1.6) corresponds to
the case that parameter (1.7) is small. However, it may not be small even if the
permittivity ratio is small, because a/h can be huge for crack-like flaws. Similar
behavior emerges for piezoelectrics, which will not be discussed here.

MCMEEKING (1987, 1990) also modeled cracks in dielectrics containing a conducting
fluid. The appropriate boundary condition is then

" =¢ =0. (1.8)

An analysis of conducting cracks in piezoelectrics has been carried out by Suo (1992).

We shall adopt (1.6) in this article, since most results are directed towards estab-
lishing a framework for macroscopic fracture testing of ferroelectric ceramics, where
the crack separation is large except for a small zone near the crack tip. From the
viewpoint of the fracture mechanics, this zone can be treated as a small-scale feature,
lumped into the macroscopically measured toughness.
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1.4. Plan of this paper

In Section 2, the elements of elasticity, electrostatics and thermodynamics are
combined for ease of reference. In Section 3, Griffith’s energy accounting is extended
to include the electrical energy. Examples are given for which exact energy release
rates are readily obtained. It is found that an electrical loading usually provides a
negative energy release rate. Whether this negative driving force will retard crack
growth will depend on the fracture mechanism at the crack tip.

To investigate the crack tip stress field, in Section 4 a general solution to the
electroelastic problem is obtained, involving four analytic functions of different vari-
ables. The electroelastic field around a crack tip in a homogeneous piezoelectric is
given in Section 5. It contains four modes of square root singularities, but only one
mode (mode T) gives rise to the tension directly ahead of the crack. A class of boundary
value problems is solved, including that of a crack in an infinite piezoelectric.

The analysis is then extended to cracks on interfaces between different materials in
Section 6. A new type of singularity, first reported by Kuo and BARNETT (1991),
emerges from this analysis. Specifically, the four singularities form two pairs: r~ '?+#
and r~'?**. The latter pair is peculiar, seemingly violating the singularity orders
suggested by the J-integral. We demonstrate that these singularities are indeed con-
sistent with path-independence of the J-integral. The solution for a finite crack on an
interface is also given.

We study the mechanics implications of our results in Section 7. Both unpoled and
poled ferroelectric ceramics are treated. A pragmatic approach is described to evaluate
fracture resistance, and fatigue crack growth of ferroelectrics.

2. Basic EQUATIONS OF THE CONTINUUM THEORY

Subject a material to a field of displacement u and electric potential ¢. The strain
v and the electric field E are derived from gradients:

i = %(ui./’+u/.i)’ E=—-9, (2.H

Attention is limited to small deformation in this work.
The stress ¢ and the electric induction D are defined such that, across an interface,
they jump by

nlo; —o,1=1t, n[Df—D;]= —w, 2.2)

where n is the unit normal to the interface pointing from the +side; tis the force and
w the charge, per unit area, externally supplied on the interface. ¢ and D are diver-
gence-free, i.e.

6;,=0, D,;,=0. (2.3)

Here the body force and extrinsic bulk charge are taken to be negligible.
The principle of virtual work is
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jo,.jyj,.dv = Jn,va,ju, ds, JDiEidv = ~Jn,-D,¢ ds, 2.4)

where v is the volume and s the surface of the body. Any two among (2.1), (2.3) and
(2.4) imply the third.

Analogies may be drawn between the mechanical and electrical variables according
to their roles in the above equations, suchasy ~ E,u ~ ¢, ~ Dand t ~ w. However,
it is y and D together that define the physical distortion of the material. They are
assumed to be reversible, so that an energy function, y(y, D), exists, for which

We will focus on materials in the stable regime, where  is convex in the (y, D, y)-space.
This class of nonliner materials is general enough to include the poled ferroelectrics
operating around the remanent state, and electrostrictive ceramics.

We shall formulate the theory based on uand ¢. A more convenient energy function
w(y, E), the electric enthalpy, is defined by

w=y—ED,. (2.6)

Evidently, w is not convex in the (y, E, w)-space : it has a saddle point at (E, y) = (0, 0).
A Legendre transformation shows that

dw = o,;dy;,— D, dE.. 2.7)
The stress and the electric induction are therefore given by
o, = 0w/0y;, D;= —0w/E,. (2.8)

Ferroelectrics are approximately linear when the loading amplitude is small com-
pared to the depoling field. Linear piezoelectrics are described by a quadratic

= 1 N 1 "
w=3 Cl/r.\' Vji¥rs — 281.\'EiE\' - eirsE[ Vrss (29)

where C is the stiffness, ¢ the permittivity and e the piezoelectricity. The following
reciprocal symmetries hold :

Cim‘ = C.\'r/'i’ Eiy = &y (2]0)
Other symmetries implied by the symmetry of the strain tensor, such as
Cipry = Cipy = Cijys €4, = €4y 2.11)

are of less significance, and will not be invoked in the theoretical development. For
stable materials, both C and ¢ are positive definite, i.e.

Cinyiiy.. >0, e EE, >0, (2.12)

for any real non-zero real tensor y and vector E.
Derived from (2.9) and (2.8), the constitutive relations for linear piezoelectrics are

61/ = Ci/r.\ Vs e\'/iE\'a Di = 811\'E\' + €irs Y rse (2 ] 3)

This is the tensor form of (1.1). An alternative expression using ¢ and E as controlling
quantities is
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‘yii = Si;‘r(\'ar.y+d\'/‘iEH Di = EZ'E\'_‘_dirsarm (214)

where S is the compliance, d is the piezoelectric strain tensor and ¢” is the stress-free
permittivity [which is different from ¢ in (2.13)]. The moduli in (2.13) and (2.14) are
obviously related.

Given a ceramic sample, the mechanical boundary conditions are taken to be

mo,; =1, ons, (2.15a)

Y, ons, (2.15b)

u=u

where the superscript 0 indicates the prescribed values. The electric boundary con-
ditions are

nlDi = _U)O’ ons,, (2163)
¢ =¢° ons,. (2.16b)

In the above, the stress and induction in the environment are assumed to be negligible.
The normal n directs towards the environment.
Define a functional

Q(uv d)) = Jv [%Cl/‘h\u/.llll‘..\ - éﬁz,\qs.:d)..\ +€ir.\'¢.1uus'] dv - J t;)u/ d?+ f wod) dS‘ (2] 7)

v N, S,

Of all the fields (u, ¢) satisfying (2.15b) and (2.16b), the solution field renders
0Q =0. (2.18)

A finite element procedure can be formulated using this variational principle, with
four degrees of freedom, u,, u,, u, and ¢, at each node. Since w is not positive definite,
the solution field need not minimize Q.

Although the relevant energy function, w, is indefinite, uniqueness can be stated for
a fairly general class of nonlinear materials under small deformation. Let (o, y, u, D,
E, ¢) and (6, 7, i, D, E, ) be different solutions satisfying the same boundary
conditions (2.15) and (2.16), so that the difference field does not do any virtual work
on the surface:

J {ni(o,;, —6,)(;— i) —n(D;,— D)) (p— )} ds = 0. (2.19)

5

Next consider the internal virtual work

v

j {(0,,—6,)(7;i—7,) +(D;— D)(E,— E)} dv. (2.20)

It must also vanish as implied by the principle of virtual work (2.4). However, the
integrand is positive for stable materials. The contradiction proves uniqueness. As an
example, for the linear material defined by (2.13), the integrand in (2.20) can be
written as
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Ciirs (7 =7, (P — Tn) +&4(D; — D)(D, — D,), (2.21)

which is positive because C and ¢ are positive definite.

3. ENERGY CONSIDERATIONS

Griffith’s energy accounting is applicable to the non-linear reversible materials
defined by (2.5). Let two such materials be bonded, with a crack area 4 left on the
interface, the crack faces being free of external charge and traction. Load the system
by a generalized displacement A and voltage V, with Fand O the associated force and
charge. The electric enthalpy W in the body, which is the volume integral of w,
accumulates according to

dW = FdA-Q dV -4 dA. (3.1

This equation defines 4 as the driving force for the crack area A4, as well as dem-
onstrating that Fand Q drive A and V. When the crack area is fixed, d4 = 0, so that
(3.1) recovers (2.4), with the identifications

FA = fn,a,,u, ds, QV= —Jn,Dgi) ds. 3.2)

Equivalent definitions of % can be derived using Legendre transformations. For
example, using the potential energy IT = W — FA gives

dll = —AdF-QdV—-% dA. (3.3)

The functions W and IT can be viewed as the total energy of the system, comprising
the body and its loading device, with the relevant function in any given problem
depending on the type of boundary conditions applied.

Consistent with the above, % can be rewritten as

¢ = _(EW/aA)AJ’ = “(an/aA)F.V- (3.4)

For example, if A is maintained by grips and V by electrodes, ¥ is the decrease in
energy W associated with the creation of a unit crack area.
For a bimaterial with the interface along the x-axis, the integral

J= j(wn, —n6,u,  —n;Di ) ds 3.5)

vanishes over contours not enclosing any singularity. When the crack faces are free
of external charge and traction

G =J, (3.6)

where the J-integral is taken over any path that begins at one point on the lower crack
face and ends at another point on the upper crack face. These are extensions of the
elastic version due to RICE (1968).

In general, for a given specimen % can be computed by analyzing the piezoelectric
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F1G. 2. Piezoelectric slab loaded by separation and voltage.

problem, but rudimentary mechanics will suffice for the following examples. Figure
2 illustrates a cracked piezoelectric slab, of thickness 4, electroded and gripped on the
top and bottom surfaces. The wake far behind the crack tip is free from the strain
and electric field. Far ahead of the crack tip, the non-zero components of strain and
electric field are

Vo = Alh, E = V/h (3.7)

Since A and V are held fixed, % is the decrease in W for a unit advance of the crack,
which in turn equals the energy in the volume 4 x 1 x 1 of the slab far ahead the tip,
and

l bl
G =wh= 5 (CoppA* =g, V2 =2e,,, VA). (3.8)
Figure 3 illustrates a double-cantilever-beam subject to applied moments and volt-
age. The top and bottom surfaces are electroded but traction-free. Since both load

and voltage are fixed, 4 equals the decrease in energy IT for a unit crack advance:
G = 96S . M/h — 3l Vi /h. (3.9)

Here plane stress conditions are assumed, but plane strain can be treated by a suitable
change of moduli. This experiment can be used to determine the effects of the electric
field on the toughness of ferroelectric ceramics. The moment may be applied by
inserting a wedge and the voltage can be either static or cyclic. Both examples can be
treated using the J-integral as done for the elastic versions by RICE (1968).

Observe that for normal operations the contribution to % from the voltage is small
and negative. This negative driving force is entirely physical ; for example, it manifests
itself in a classical physics experiment, where a dielectric slab partially inserted in a

x X

C h y _-—V
( L,

L |

F1G. 3. Double-cantilever-beam loaded by moments and voltage.




748 Z. Suo et al.

parallel-plate capacitor is driven in by this force [see FEYNMAN e al. (1964)]. However,
whether this force will retard crack growth should depend on the fracture mechanisms
at the crack tip. We will discuss this point further in Section 7.

4. COMPLEX VARIABLE SOLUTION

Following a procedure of ESHELBY et al. (1953) for anisotropic elasticity, we
derive the general solution to the electroelastic problem, which involves four complex
variables. For linear piezoelectrics, (2.1) and (2.13) give

aii = Cl’/r,vur..\‘ +€.\ji¢..\9 Di = - Si.\'¢,x +eir«\‘ur,.\' (41)
Substituting into (2.3), one obtains four Navier-type equations foru and ¢ :
(Ci/r.\ur +€,\/l¢))“\'l’ = Os (_-gi,sgb + eir‘\ur)..\l = O (42)

Attention will be focussed on two-dimensional problems in the (x, y)-plane, i.e.
nothing varies with x;.

The general solution can be obtained by considering an arbitrary function of a
linear combination of x and y:

¢} =af((ix+30p). (4.3)

It is convenient, here and in the sequel, to take {u,. ¢} to be a column with the entities
indicated, so that a is likewise a four-component column. Without loss of generality,
one can always take

=1 G=p (4.4)

The number p and the column a are determined by substituting (4.3) into (4.2), which
gives

(Cujrpa, +e,,5a4),05 = 0, (—egpaste,za,)(,(; =0, 4.5)

where « and f take on the values | and 2. This is an eigenvalue problem consisting
of four equations; a nontrivial a exists if p is a root of the determinant polynomial.
In Appendix A we prove that (4.5) admits no real root, so the eight roots form four
conjugate pairs.

Let p\, p>. psy and p, be the roots with positive imaginary part, a, the associated
columns, and z, = x+p,y. The most general real solution is obtained from a linear
combination of four arbitrary functions:

4
(.9} =2Re ) a,f(z,). (4.6)

x=1

For a given boundary value problem, the four functions, £}, f5, /3 and f,, are sought
to satisfy the boundary conditions. The stress and induction are given by
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4 4
{0:,D,} =2Re ) b,fi(z), {0,.D}=—2Re Y by fi(z), 4.7)
=1 x= 1

where, for a pair (p, a), the associated b is
by = (Cypa, +epnad)ly, by = (—eya,+er5a,)C;. (4.8)
This is derived from (4.1) and (4.3). Substituting (4.8) into (4.5) gives an alternative
expression :
b= —p (Crpa,+ega)ly, by=—p '(—epas+e,a,). (4.9)
Define 4 x 4 matrices
A=la,,a5,a5,a,], B=[b,,bs,byb,]. (4.10)

Each of the as is determined by the eigenvalue problem up to a complex-valued

normalization constant. Assuming that the four eigenvalues are distinct and following

a method in STROH (1958), one can show that both A and B are non-singular.
Define

Y =idB ', @.11)

proofs being given in Appendix A. First, Y is Hermitian, and independent of the
normalization for 4. Next divide Y into blocks

Y YM}
Y= s 4.12
[Yu Yy, ( )

where Y, is the 3 x 3 upper left-hand block and Y, is the lower right-hand element.
They have different dimensions:

Yy ~ [elasticity] ', Y4 ~ [permittivity] ', Y4 = Y1, ~ [piezoelectricity] .

(4.13)
For stable materials, LOTHE and BARNETT (1975) showed that
Y, is positive definite, but Y,, < 0. (4.14)
Finally consider an in-plane coordinate rotation
cosf sinf 0
ox} .
RE|::|= —sinf) cosf® 0], 4.15)
ox;

0 1

where (*) indicates the new coordinates, and 0 is the rotation angle from x to x*. The
four blocks of Y transform like second-rank tensors, vectors and scalars, respectively,
Le.

Y¥ =RY,\R", Y¥,=RY,, Yi =Y, (4.16)
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These are extensions to the corresponding elasticity theorems of TING (1982), and a
shorter proof is given in Appendix A.
A bimaterial matrix is defined as

H= Y|+Y3, (4.]7)

where the overbar indicates complex conjugation. Hereafter the subscripts 1 and 2
attached to matrices and vectors distinguish the two materials; this notation should
not cause confusion if one notes the context in which it appears. H maintains all the
properties of Y listed above.

The general solution involves four analytic functions, each depending on its own
complex variable. Following the one-complex-variable approach introduced in Suo
(1990), we consider a column of a single variable defined as

f(2) = /1. 202, /3. f3(2)}, z=x+{p, Im() >0. (4.18)

The solution to any given boundary value problem can be given in terms of such a
column, regardless of the precise value of {. To compute the field quantities from (4.6)
and (4.7), one must substitute =, z,, z; or z, for each component function. This
approach combines standard matrix operations with the techniques of analytic func-
tions of one variable, and thus bypasses some complexities arising from the use of
four complex variables. Of particular importance are the quantities on the x-axis:

v(x) = (1. ) = AF(x)+ AT(x), (4.19)
t(x) = {0, D.} = Bf(x)+ BT (x). (4.20)

The general solution has the same structure as the corresponding anisotropic elas-
ticity problem. Indeed, results in the following two sections were initially anticipated
from the corresponding elasticity solutions given in WILLIS (1971) and Suo (1990).

We should remark that the eigenvalue problem (4.5) can be recast in an alternative
form using an eight-dimensional framework due to BARNETT and LoTHE (1975).
Indeed the study by Kuo and BARNETT (1991) of interfacial cracks in bonded piezo-
electrics uses the eight-dimensional formalism rather than the four-dimensional frame-
work of this section.

5. CRACKS IN PIEZOELECTRICS
Results in this section apply to cracks in homogeneous piezoelectrics, and interface

cracks for piezoelectric bimaterials having sufficient symmetry leading to a real valued
H. Such interfaces have been discussed by QU and Bassani (1989) for elastic materials.

5.1. Crack tip field

We begin with an asymptotic problem. A semi-infinite crack lies on the interface
v = 0 between two half spaces, material 1 above, and 2 below. The crack tip coincides
with the origin x = 0; the bonded interface is on x > 0. Denote L as the cracked
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segment. Assume the bond is perfect, so that the displacement and potential are
continuous across the bonded segment :

vi(x) =vy(x), x¢L. (5.1
There is no external charge or traction on the bonded interface, so that
t(x) =ty(x), x¢L. (5.2)

As discussed in Section 1, ferroelectric ceramics are much stiffer and more permittant
than the environment, so that stress and electric induction outside of the ceramic are
assumed to be negligible. and. in addition. there is no charge or traction on the crack
faces. Thus,

t(x)=t,(x)=0, xel. (5.3)

Furthermore, the field vanishes far away from the crack tip, i.e. f'(z) = 0(z°) as z
goes to infinity. This is an eigenvalue problem : no length or load is involved.

Let the columns defined in (4.18) be f,(z) and f,(z) for the two blocks. The
continuity of t(x) across the v-axis, hoth the bonded and cracked segments, requires
that

B () + BT (x) = Bofy(x)+ BT (x), —w<x< +x. (5.4)
The above is rearranged in the form
B/f,(x)— BT (x) = B-f5(x)— B, F,(x), —o0 <x< +o0. (5.9)

The left-hand side of (5.5) is the boundary value of a function analytic in the upper
half-plane, and the right-hand side is the boundary value of another function analytic
in the lower half-plane. Hence, both functions can be analytically continued into the
entire plane. Since both vanish at infinity to conform to a zero far field, they must
vanish at any z = x+{y(Im { > 0). Thus,

B\[f(2) = B,T,(z), y>0. (5.6)
Define the jump across the interface
d(x) = v,(x) —v,y(x). (5.7)
Equations (5.6) and (4.19) give
id’ (x) = HBf'(x) — HB,f%(x). (5.8)

The solution is simple if H is real, that is
H=H. (5.9
When the crack is in a homogeneous material, H is indeed real:

H=Y+7=2ReY. (5.10)

H can be real for bimaterials having certain symmetry. In the rest of this section, we
assume H is real. The interfaces for which H is complex will be treated in the next
section.
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Continuity of the displacement across the bonded interface, as inferred from (5.8),
implies that a function defined as

{B’,f’l (z). y>0,
h(z) =

B.fy(z), y<0 e-th

is analytic in the entire plane except on the crack. The traction charge boundary
condition (5.3) leads to a homogeneous Hilbert problem

h*(x)+h (x) =0, xel, (5.12)

where superscripts + and — distinguish the boundary values when the crack is
approached from above and below, respectively. The singular solution to (5.12) that
gives bounded displacement and potential is

h(z) = (8nz) 'k, (5.13)

where the branch cut is along the crack line. Note that the full field is obtained once
h(z) is determined. A few explicit results are given below.
At a distance r ahead of the crack tip

{02.D,) = (2mr) 'k (5.14)

Since the traction and the charge are real, k must be real. Following Irwin’s nomencla-
ture, we write

k= {Ky. K. Ky, Kiv |} (5.15)

Thus the stress and the electric induction are a linear superposition of the four modes
of square root singularities. At a distance r hehind the crack tip

d(r) = (2r/n)' *HK. (5.16)

The displacement jump and the voltage across the crack are asymptotically parabolas.
Since, in general, H contains off-diagonal elements, a Ky field will give rise to crack
opening, and a K, field to voltage between the crack faces.

The energy release rate can be computed by the closure integral

A
= v‘[ t" (A —r)yd(r) dr, (5.17)

0

where A is an arbitrary length. This is consistent with the definition in Section 3, and
was derived by IRwIN (1957) for cracks in elastic materials. Using (5.14) and (5.16)
we obtain

¢ = Ik"Hk. (5.18)

Since H is indefinite [see (4.14)]. % can be negative for k with a large component K.
In deriving (5.18), the identity
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1
J t'(1—1t) " *dt = gn/singn, (|Regq| < 1) (5.19)
0

has been used with ¢ = 1/2.

5.2. Full-field solutions

Having obtained the asymptotic fields, we turn our attention to a class of boundary
value problems. Consider a set of cracks on the interface, collectively denoted by L.
The only applied load is the traction—charge column T(x) prescribed on the crack
faces:

t(x) = t,(x) = —T(x), xel. (5.20)

This problem is basic: other loadings can be solved by superposition. The Hilbert
problem (5.12) becomes non-homogeneous :

h*(x)+h (x) = —T(x), xelL. (5.21)

This equation has many solutions. The auxiliary conditions that render a unique
solution are: h(z) = o(z") as |z] - oo, h(x) is square root singular at the crack tips.
and the net Burgers vector for every finite crack vanishes. From (5.8), the last
statement leads to

f [h"(x)—h " (x)]dx =0 (5.22)
for a finite crack in (x,, x;).

Remarkably, the governing equations (5.21) and (5.22) do not involve any material
constants. Thus the solution must be identical to that of a mode Il crack in a
homogeneous, isotropic, elastic body. The solutions to particular crack arrangements
are available in handbooks. As an illustration, we consider the generalized Griffith
problem: a crack of length 2¢ in an infinite piezoelectric, subjected to a uniform
traction—charge column T. The solution is

fh(:) dz = iT[(z" —a’)" ? =2], (5.23)

where the branch cut for the square root coincides with the crack. The two columns,
f, and f,, are obtained from (5.23) and (5.11). The field quantities are given by (4.6)
and (4.7), with z, substituted for each component function and each material. For
example, one can confirm that

t(x) = [x(x*—a’) " =T, |x| >a, (5.24)
d(x) = (@>—x*)"*HT, |x|<a. (5.25)

Suppose that the traction and charge are caused by the remote fields {¢3,, D3 }.
The intensity factors are identical with the classical ones for a crack in an isotropic
elastic material :
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Ky = /a0, K, = /mach, Ky =./nact;, Ky = /naDi. (5.26)

This result is surprising because it holds for piezoelectric materials with arbitrary
anisotropy. However, the simplicity is accidental rather than a rule: it only works for
cracks between identical half-spaces, or for certain special bimaterials.

6. INTERFACE CRACKS

Bimaterials with complex H are examined in this section, which is the more common
case for interfaces, be they dielectrics, piezoelectrics or conductors. The results in the
above section up to (5.8) are still valid. Continuity of displacement across the bonded
interface now requires that a function defined as
) {B,f’l (2), y >0,

M) = Vu- 1 ABfyG), v <0

(6.1)

be analytic in the whole plane except on the crack lines. Once h(z) is found, so is the
full field.

6.1. Crack tip field

Consider the asymptotic problem first. The traction—charge-free condition (5.3)
gives

h*(x)+H 'Hh (x) =0, xelL. (6.2)
This is a homogeneous Hilbert problem. A solution can be sought of the form
h(z) = wz~ V275, (6.3)

where w is a four-element column and ¢ a number, both to be determined. The branch
cut coincides with the crack line, and the phase angle of z is measured from the
positive x-axis. Substituting (6.3) into (6.2) gives

Aw = > Hw. (6.4)

This is a 4 x 4 eigenvalue problem. The algebraic details of the solution are important
for understanding the crack tip field ; they are recorded in Appendix B. The four
eigenpairs have the structure

(e,w), (—é&,w), (—ik,w3), (ik,w,), (6.5)

where ¢, k, w; and w, are real, but w is complex.

The general solution to (6.2) is then a linear combination of the four solutions of
the form (6.3) :

K w+e Kz "w  K,2"W,+ K,z *w
h(z) = Sy ST : (6.6)

2\/ 27z cosh 7e 2\/ 27z oS K

where Kis complex and K5 and K, are real ; they are intensity factors. The arrangement
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ensures that the traction and the charge are real, and renders a simple expression for
the traction—charge interface. The novel feature of (6.6) is the presence of singularities
of order r='"*** and r~'"2=*_ which were previously found by Kuo and BARNETT
(1991). The latter singularity is particularly surprising because it provides a term of
order r~ '~ in the integrand of the J-integral (3.5), which appears to conflict with
path-independence of the J-integral (in elasticity, the integrand has order r~'). This
apparent paradox will be resolved below.

It is convenient to display physical quantities in an eigenvector representation. For
example, write the column t(x), x > 0 as

t= (WA IWH W3+ 1,W,. (6.7)

Because t is real, the components for w and W must be complex conjugate, and ¢, and
14 are real. Consequently, the t-column in the interface a distance r ahead of the crack
tip has three components: one is in the plane spanned by Re [w] and Im [w], the other
two are along the w;- and w,-directions. These components vary with r according to

(= KoK R (6.8)

\/ 2nr 2nr
The above may be taken as defining equations for the intensity factors. As r — 0, the
component ¢ rotates in the plane spanned by Re [w] and Im [w]. This is clearly the
analog of the corresponding result for isotropic elastic bimaterial, where ¢ = 0, +ioy,.
The jump d a distance r behind the tip is

~ r Krtw Krw
=(H+H) [—
d=(H+ )\/;[(H—Zig) cosh n£+ (1—2ig) cosh ne

Kir*w, K,r*w,
— - . 9
+(l+21c)cosmc+(l—21<)cosmc:| (6.9)

Substituting the above crack tip field into the closure integral (5.17) gives
_ W/ (H+H)w K| wi(H+H)w,
B 4 cos® ik

4 cosh® ne KK, (6.10)
In deriving this, we have used the orthogonality described in Appendix B, and the
identity (5.19) with ¢ = 1/24+x, 1/2+ie. The paradox related to the J-integral is
resolved by this result, i.e., J = %, just as in the case of elasticity, so that J is indeed
finite and the term of order r~ '~ in the integrand must integrate to zero. This is
reflected in the orthogonality wiHw, = 0 which, had it not been satisfied, would have
introduced into the closure integral (5.17) a term of order '~ 2, with the consequence
that a finite ¢ could not have been defined.
No normalization has yet been assigned to the eigenvectors. A different nor-
malization changes K and K, by real factors, and K by a complex factor.

6.2. Full-field solutions

Now consider the boundary value problems in Section 5.2 for complex H. The
Hitbert problem analogous to (5.21) is
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h*(x)+H 'Hh (x) = ~T(x), xelL. (6.11)
Writing the above equation in its components using the eigenvector representation,
h=hw+hWwt+hws+hw,, T=Tw+TW+Twy+T,w,, (6.12)
one obtains the decoupled equations
hi +e ™h, = —T, hi+e ™h, =T,
hi+e™™hy = —Ty, hi+e "™hy = —T,. (6.13)

Furthermore, since they contain no explicit material dependence besides ¢ and «, their
solutions must be identical to those for isotropic elastic bimaterials. One can derive
the solution using the method of analytic functions or from the known solutions for
isotropic elastic bimaterials.

As an illustration, consider the generalized Griffith problem with a crack of length
2a on the interface between two half-spaces of piezoelectrics. Consulting ENGLAND
(1965), where the corresponding elasticity problem was solved, we obtain

gare T (Y o maryes
fhlu)du—wem[(Ha)(h @) ]

Nde_ Iy fzeay s
J\h‘(") dz = l+e2m‘a [(Z-f—a) (z a ) ":I’ (614)

where £, and 4, are omitted, for they can be obtained by substitutions. The intensity
factors are

K = T(1 +2ig) cosh (ne) (na) "2 (2a) *,
K; = T5(1+2k)cos (mc)(na)"l(za)——x. (6.15)

Without re-solving any problems, one can write down solutions for many cracks
on the interface between half spaces of piezoelectrics, provided the corresponding
solutions for isotropic elastic bimaterials are known.

7. FRACTURE MECHANICS
7.1. Unpoled ferroelectric ceramics

Unpoled BaTiO, makes good capacitors due to its large permittivity. The poly-
crystalline, multi-domain structure cancels the macroscopic piezoelectricity. This spe-
cial class of materials is ideal for theoretical study since it has a simple macroscopic
field, yet still retains the essential features of ferroelectric ceramics. In Section 5, we
have established that the piezoelectric field around the crack tip is square root singular
and linear in four intensity factors. But what is the crack tip? Or what does the
singularity mean physically? The assumed material linearity cannot hold at the crack
tip. Specifically, ferroelectric ceramics undergo hysteresis under sufficiently high load-
ing. Furthermore, down to a small scale many other features, such as the presence of
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grains and domains, will invalidate the solution. Consequently, the solution given
above is only correct at some distance away from the crack tip.

Because of the square root singularity, for large specimens, an annulus exists,
smaller than the specimen size but larger than the crack process zone, in which the
field is described by the singular field of Section 5. This so-called K-annulus is
parameterized by the four intensity factors: any other information will be lost in the
communication between the macroscopic loading and microscopic process. Conse-
quently, the fracture criterion can be written in terms of the four intensity factors.
Most fracture tests have been conducted with specimens under symmetric loading,
such as double-cantilever-beams in Fig. 2. This will in general produce both mode I
and mode IV fields at the crack tip. The general results in Section 5 are specialized to
this case below, with matrix Y given by (A2).

The stress and the electric induction are square root singular as the crack tip is
approached. Let the crack plane be normal to the z-axis. The intensity factors K, and
K,y are defined such that, at a distance r ahead of the crack tip,

KI WKIV

—, D.=-——
\/an \/an

The crack separation and voltage at a distance r behind the crack tip are given by

4(1—v)/r 4\/r
M= KL Mg == [ K, (7.2)

where v is the Poisson’s ratio, u the shear modulus and & the permittivity ; they are
macroscopic average quantities of the polycrystalline ceramics. The Irwin-type
relation connecting % and the intensity factors is

G — 2(1 —Y) K2—
u

(7.1)

1

2% K. (7.3)

Under static loading, the fracture criterion should be of the form
% = T(J/u/eKi/Ki), (7.4)

where I' is the fracture energy depending on the mixity of modes I and IV. Whether
K,y will influence T" depends on the magnitude of the dimensionless mixity, and on
the crack tip process. In particular, the hysteresis strain associated with the domain
switching as the crack grows is likely to play an important role.

Under cyclic loading, a ferroelectric usually is subjected to low load, but the field
concentrated at the crack tip generates hysteresis loops locally so that fatigue is possible,
as observed experimentally by WINZER er al. (1989). No systematic experiments or
modeling have been done in this area. The present work would allow fatigue crack
growth due to the small-scale hysteresis to be evaluated using the approach for low-
stress high-cycle fatigue crack growth in metals. It is anticipated that experiments
analogous to those described in Paris and ERDOGAN (1963) for metal fatigue would
establish Paris-type laws for ferroelectrics. Specifically, the crack extension per cycle,
da/dN, must be a function of the loading range, i.e.
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P, E=0

Ky#0 AP TE

o el

Fi16. 4. For a double-cantilever-beam, a mixed ficld of modes I and 1V is induced by the voltage alone.
When E is parallel with Py, the uncracked portion undergoes a piezoelectric expansion along E. but the
cracked portion remains unchanged. The strain misfit causes stress ahead of the crack tip, and thus K; # 0.

da/dN = f(AK|,AK,). (7.5)

This relation characterizes a material property, which is independent of the geometry
of the samples being tested.

7.2. Poled ferroelectric ceramics

The additional complexity due to piezoelectricity can be illustrated by a special case
of much practical significance : cracks in a plane normal to the poling axis of the poled
ceramics. The relevant algebraic details are discussed in Appendix C. Most fracture
tests have been conducted with specimens under symmetric mechanical loading, such
as double-cantilever-beams in Fig. 2. This will in general produce both mode I and
mode IV fields at the crack tip. The intensity factors are still defined by (7.1). The
crack separation and voltage at a distance r behind the crack tip are given by

_|r (K Ky L Ky K,)
Au. =4 /27r<CT+ e), Ap =4 /27:( ot ) (7.6)

where Cr, ¢ and e are effective moduli determined by the procedure in Appendix C.
The Irwin-type relation connecting % and the intensity factors is
1 1

$=ac, K5

1
= 2C, Klzv + E K Kiy. (7.7)

Although the macroscopic field is much more involved in this case, the fracture
mechanisms are expected to be qualitatively similar to those of unpoled materials.

As illustrated in Fig. 4, the double-cantilever-beam has a mode I component under
electric loading alone. This can be appreciated by noting that the material far behind
the crack tip is not loaded, and the strain induced by the voltage ahead of the tip
causes the stress intensity. However, finite element analysis by HE et al. (1991)
indicates that K| due to V'is typically small.
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7.3. Interface debonding

Debonding at electrodes and other interfaces has been identified to be a major
failure mode in piezoelectric and electrostrictive actuators (WINZER et al., 1989),
although no systematic testing and modeling have been carried out. We believe that
concepts used in elastic interface fracture mechanics are applicable for such a study
[see RICE (1988) and Suo (1991) for brief reviews]. A more extensive discussion on
the fracture of layered materials has been presented by HUTCHINSON and Suo (1992).

In Section 6 we found that the crack tip field is linear in three intensity factors, one
complex and two real, of different dimensions. Interfacial fracture in general should
be of the mixed-mode type. The mode mixity must be chosen to reflect the state at
the tip. A length scale, I, representative of the process zone size, may be identified,
and the mode mixity can be defined by the dimensionless ratios

Im (L*K)/|K|. L*K:J|K|. L *K,/|K|, (7.8)

the fracture toughness depending on these mixities. The experimental determination
of the mixed-mode toughness presents a formidable task. Simplifications are possible
for special crack orientations and loading conditions. For example, for unpoled
capacitor materials, the mechanical and the electrical fields are decoupled at the
macroscopic level, so that only Ky defined as in (7.1) is present under electrical
loading. This fact simplifies the fracture mechanics for the ceramic—metal interfaces.

8. CONCLUDING REMARKS

Microcracking, fatigue and fracture are among the properties that limit the use of
ferroelectric ceramics as large strain actuators. A fracture mechanics theory is
developed here to evaluate static toughness and fatigue crack growth for ferroelectric
ceramics under small-scale hysteresis. It is likely that various toughening concepts for
structural ceramics may find their electrical counterparts, so that ferroelectric
materials may be engineered to exhibit superior performance. Future necessary work
will include calibrating electromechanical fracture specimens using finite elements,
failure testing under static and cyclic loads, modeling of fracture processes at the
crack tip to understand the role of ferroelectric hysteresis and accounting for the
presence of a conducting fluid, and analyzing typical structures such as piezoelectric
films and multilayer actuators.
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APPENDIX A

A few algebraic theorems of the complex variable representation are documented here. First,
following the method used by ESHELBY er al. (1953) for the clasticity problem, we prove that
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the eigenvalues p of (4.5) are complex. Multiply the first equation in (4.5) by a; and sum over
J, and multiply the second by a,; the difference of the two results is

(ijrﬁara/"‘gaﬂas)gx‘:/i =0. (A1)

If an eigenvalue p is real, the associated eigenvector a can be chosen as real, and, therefore, with
C and ¢ positive definite, the left-hand side of (A1) must be positive. Hence, by contradiction p
cannot be real.

Next consider the matrix Y defined by (4.11). For isotropic, non-piezoelectric dielectrics, the
in-plane displacements, the anti-plane displacement, and the electric potential decouple.
Unpoled ferroelectric materials belong to this class. The general representation (4.6) fails because
of the degeneracy associated with such symmetry, but Y can be found by a limiting process
which gives

|
/N_\
)
.tl\.)
-
N—
[ —
=i
-
<o
<

Y = | , (A2)
0 0 - 0
u
1
0 0 0 —-
&

where v is the Poisson’s ratio, u the shear modulus and ¢ the permittivity. Note that conductors
can be treated by setting ¢ = oo. Several properties shown in this special case are general to all
piezoelectrics. They have been mentioned in the text and their proofs are outlined below.

We show that Y is Hermitian. The proof parallels that of STROH (1958) for the elasticity
problem. From (4.8) we have

()22 R _ ~(2) (1 =(2) (1 = N F(2) #(1
pPat? b = {C,, 5@ al" +e;,5d] ‘a) —eyaa” +5’2r1;a4 'a" T, (A3)
and from (4.9)
Hat2), 1 _ =(2 1 =2 1 =(2) (1 N7

pha b = —(C, a0 a" ey d0ay —epaial e pal’al N V). (A4)

Subtracting these two equations,
2 ya(2 2 1 =(2 2 i 2 ny 72 I
(p( 2 ( ))a< Vopth = {Cx/ ﬂa( )a( )+(eﬁ/1+ex/ﬁ)( a )a(!)+al )a( b)_g a< )a( ’}g( )é’}g)_
(A5)

Now the right-hand side has the Hermitian symmetry for indices (1) and (2), and so the left-
hand side must also ; that is,

(p-(l) —p(]')ﬁ‘z) pY = ([)( 3] 7[3(2))3(1) . 5(2)’ (A6)
or, since ('’ —p'") has negative imaginary part and so is not zero,
aVepth = —aqhp, (A7)

From the definition (4.11) of Y, the above implies that

YT=17, (A8)

that is. Y is Hermitian. Only the reciprocal symmetry in (2.10) is invoked in the proof.
Now consider the coordinate rotation (4.15). Since C. e and ¢ are tensors, from (4.5) {{,. (-}
transforms like a vector, {a,,a,, a;} a vector and a, a scalar. Specifically,
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(x| | coso sin6 ¢,
[C?:I_I:——Sinﬁ cosﬁ][éz:l' (A9)

With the identification that p = {,/{, and p* = (%/{}, one obtains that

__pcosf—sind

* psin 0t cos 0 (A10)
Equation (4.8) implies that {b,, b,, b;} transforms like a vector and b, a scalar. Define
cos sin0 0 O
~Z[R 0]= —sinf cosf 0 O (All)
0 1 0 0 10
0 0 0 1
The transformation can be summarized as
A* = RA, B*=RB. (A12)
Note that B ' = R7, and (4.11) implies
Y* = RYR". (A13)

This completes the proof of (4.16).

APPENDIX B

The structure of the eigenvalue problem (6.4) is discussed here. The parameter ¢ satisfies

|H—e>™ H| =0. (B1)
Since H is Hermitian, the transpose of (B1) is

|H—e™ H| =0. (B2)
Also, by complex conjugation,

|H—e> H| =0. (B3)

It follows that. if ¢ satisfies (B1), then so do —e, £and —&.
To make further progress, write H in its real and imaginary parts:

H=D+iW, (B4)

where D is real and symmetric and W is real and antisymmetric; in this context the symbols
have nothing to do with the electric induction or energy used in the main text. Equation (6.4)
becomes

D~ 'Ww = —ifiw, (B5)
where

1 1-p
p = —tanh(ne), or e¢= I In H;ﬁ' (B6)
From the observation for ¢ made above. if § is an eigenvalue, so are —f8, f and — f. It follows
that (B1), written in terms of f3,
| D~'"W+ipl) =0, (B7)

must have the form
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B*+2bB*+¢ =0, (B8)

where
b=3tr[(D7'W)l, c=|D""W]|. (B9)

The above were originally presented by Kuo and Barnett at a workshop, and they also gave
possible sets of roots to (B8), which lead to several different crack tip singularity structures.

Since their initial presentation, the present writers have realized that only one set of the roots
to (B8) is physically admissible because ¢ is restricted as follows. Observe that [Wi{ =0, a
property of any antisymmeric matrix of even order, and | D || <0, a consequence of (4.14), so
that

c<0. (B10)
The roots of (B8) can therefore be expressed as
Bia== (B> —)2=b]"2, Bsa= +i[(b*—c) 2+ b (BI1)

Thus, one pair is real and the other is purely imaginary. In the notation of the body of the text
1 1 N
s=;tanh*'[(b2—c)‘2—b]'2, K=;tan"[(bzvc)'3+b]‘“. (B12)

These results have been included in Kuo and BARNETT (1991). Their numerical results indicate
that ¢ and « are very small for several piezoelectric bicrystals.
The associated eigenvectors satisfy

Aw =e™ Hw, Hw=e¢ ™ HwW, Hw,=e ™ Hw,, Hw,=e"Hw, (B13)

It can be confirmed that w is complex but w; and w, are real, satisfying the orthogonality
relations

w’ w Hw 0 0 0
T Trre
w Hiw.W.waw,] = 0 w Hw 0 ‘0 . (B14)
w) 0 0 0 wiHw,
wh 0 0 wiHw, 0

Under a rotation of the interface but with the relative orientation of the two half-spaces
fixed, H transforms according to

H* = RHR", (B15)

where R is defined by (A11). Consequently, the cigenvalues ¢ and x are invariant under such
a rotation, and the eigenvectors transform according to

w* = Rw. (B16)

These can be verified directly by substituting (B15) into (BI) and (6.4). TING (1986) observed
similar results for elastic materials.

APPENDIX C

In the text, the crack problem has been solved in the sense that only algebraic operations
remain to obtain explicit results. In general, Stroh’s eigenvalue problem must be solved numeri-
cally. Here explicit algebraic results are given for a class of materials of practical significance::
the poled ceramics. The constitutive equation has transverse symmetry around the poling axis
(axis-3):
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(1) Crack front coincides with the poling axis.

This case has been studied by Pak (1990). The (x, »)-plane coincides with the isotropic (1, 2)-
plane. The in-plane deformation (u, u,) is decoupled from the anti-plane deformation and the
potential (u., ¢). The former is identical with the elasticity problem. We focus on the latter.

The complex representation given by Pak is

u-=2Re[/1(9)], ¢ =2Re[fa(2)], (C3)

The two characteristic roots are identical, p = p, =i Consistent with the notation of this
paper, we write

z=x+Iiy.

I 0 Cqq €15
A= . B=i B
A s
The matrix Yis then
1 cad kerd ,
Y = 1*;; I:k:;sl —811511]’ k= eis/(ciae) ). (C5)

This is the lower right-hand block of the 4 x 4 matrix. The upper left-hand block is identical
to that in (A2).
The complete solution is given explicitly in the text. In particular, for a crack tip in a

homogeneous material,
o Ki’! + 2k KKy :l
2(1+k) | cay

€5
For an interface crack, the in-plane deformation contains an oscillatory singularity. But the
field derived from (u., ¢) remains square root singular, and, in each material, these components
of the crack tip field remain the same as the homogeneous ones.

2
Kiy

e

l—v R
%= (K K+ (C6)
2u

(it) Crack plane perpendicular to the poling axis.
Now we look for field in (1, 3)-plane, where u, decouples from (u,,u., ¢). With u, ignored,
the characteristic equation (4.5) becomes

(cy1+cqap?) (cratca)p (ex1+es)p a 0
(crs+es)p (cas+c33p?) (e15+e;33p7) a; 1 =10/ (&)
(esi+eis)p (e 5+ey5p7) — (&, +eyp7)la, 0
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Note that the determinant is a third-order polynomial in p*. The characteristic equation can
be written

(P> +27)(p*+2p&p* +EH = 0. (C8)

The dimensionless numbers 2, p and ¢ depend on the constitutive constants ; a short computer
code is needed to determine them. For stable materials, they are real and restricted so that

x>0 &>0, p>—1L (C9)

The roots with positive imaginary parts are
iE(n+tm). p>1

= , = 10
Ps o, Pia {é(lnim). 0 < ]- (C )

o (if’) e (“;f") . CI1)

The expressions for the matrices are cumbersome in appearance, and it is probably best to

proceed numerically at this point.
Due to the symmetry of the problem and its role in (5.16), the real part of Y has the structure

where

! 0 0
C,
Rev=|o0 | (C12)
B C, e |’
1 1
O _ —_
e &

where the elements should be computed numerically.





