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I. Introduction

Soap bubbles show up in kitchens, science museums, and popular books
(e.g., Isenberg, 1978). There has long been a tradition of drawing analogies
between soap films and microscopic surfaces in solids. The analogy, how-
ever, can be misleading. The air pressure in each bubble is uniform and
relates to the bubble volume. The shapes of an assemblage of bubbles
minimize the total film area for the given volume of every bubble. The
shapes change when air is blown into the bubbles or diffuses across
the films.

In solids, there exist phase boundaries, grain boundaries, domain walls,
and bi-material interfaces. The stress in each solid grain is usually non-
uniform, and the total surface area need not be minimal for given grain
volumes. In addition to surface tension, the free energy results from stress,
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electric field, and composition gradient, etc. Kinetic processes include
diffusion, creep, and reaction. '

The motion of the microscopic surfaces affects material processing and
performance. For a bulk material, an overall knowledge of the structure,
such as the grain size distribution and pore volume fraction, is often
adequate. For a film or a line, where the grain size is comparable to the
film thickness and linewidth, an overall knowledge of structure is inade-
quate; for example, in submicron aluminum interconnects, the electromi-
gration damage relates to structural details, e.g., crystalline texture, indi-
vidual grain-boundary orientation (Thompson and Lloyd, 1993). In cases
like this, the internal surfaces are better viewed as components of one
single structure.

We can now analyze deformation in complex structures using general-
purpose computer codes. It would help many technical innovations if we
could do the same for the evolving structures in materials. With this in
mind, this article reviews the recent development of an approach that
treats surface motion in a way that resembles the finite element analysis of
deformation. Attention is focused on two mass transport mechanisms:
migration of, and diffusion on, an interface. Examples are also given for
other mass transport mechanisms.

At the heart of the approach is a weak statement that combines the
kinetic laws and the free energy variation associated with virtual surface
motion. On one hand, this weak statement reproduces the differential
equations of Herring (1951) and Mullins (1957). On the other hand, this
weak statement forms the basis for various Galerkin-type methods. In the
latter, a surface is described with a finite number of generalized coordi-
nates, and the Galerkin procedure reduces the weak statement to a set
of ordinary differential equations that evolve into the generalized
coordinates.

Depending on one’s purpose, one may describe a surface with either a
few or many degrees of freedom. To study certain global aspects of the
surface motion, one may describe the surface with a few degrees of
freedom. Ideas in low-dimensional nonlinear dynamics apply. Even with a
linear kinetic law, surface evolution is highly nonlinear because of large
shape and topology changes. The surface may undergo instabilities and
bifurcations.

Rigorously, a surface has infinitely many degrees of freedom. To resolve
local details, one must describe the surface with many degrees of freedom.
A systematic approach is to divide the surface into many small, but finite,
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elements and follow the motion of the nodes of the elements. The
Galerkin procedure gives a viscosity matrix that connects the generalized
forces and the generalized velocities. The procedure is analogous to the
finite element analysis of deformation.

Most sections of this article may be read independently. The main
exceptions are Sections II and V, which formulate, respectively, interface
migration and interface diffusion. The subjects of all sections should be
clear from the Table of Contents. Free energy is used throughout the
article to study isothermal processes. (An entropy-based formulation is
necessary if heat transfer plays a part.) The treatment is phenomenological
with few references to the underlying atomic processes. Such continuum
models are indispensable because a microstructural feature often contains
a huge number of atoms. Technical processes are used to motivate the
discussion, but the empbhasis is on basic principles and simple demonstra-
tions. Analytical solutions of several idealized models are included; they
shed light on more complex phenomena, and may also serve as benchmark
problems for general-purpose codes in the future. No attempt, however,
has been made to review the literature exhaustively. By focusing on the
principles and demonstrations, the reader should grasp what this line of
thinking has to offer, and integrate it to his or her own way of thinking.

II. Interface Migration: Formulation

This section demonstrates the basic principles by examining a classical
model with very few ingredients. An interface separates either two materi-
als, or two phases of the same atomic composition, or two grains of the
same crystalline structure. The free energy that drives the interface migra-
tion has contributions from many origins. This section includes only the
interface tension, and the free-energy difference between the two phases
in bulk.

Many kinetic processes may determine the velocity of the interface
motion. If a phase transition generates a large amount of heat, such as
during freezing, heat diffusion often limits the interface velocity. If the two
phases have different compositions, such as in solution precipitation, mass
diffusion in the phases often limits the interface velocity. In addition to
diffusing over long range, atoms must leave one phase, cross the interface,
and join the other phase. This last process will be referred to as interface
migration. This section analyzes the situations in which long-range heat
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and mass diffusion are absent or rapid, so that the interface process limits
its velocity.

This model arises from many phenomena; see Taylor ef al. (1992) for a
literature survey. The presentation here focuses on the free energy varia-
tion associated with the virtual motion of the interface, leading to a weak
statement. The weak statement, much like its counterparts in continuum
mechanics, is the basis for finite element methods. It has been used, for
example, by Sun et al. (1994) to study void shape change in an elastic
crystal via surface reaction, and by Cocks and Gill (1995) to study grain
growth.

A. NONEQUILIBRIUM THERMODYNAMIC PROCESS

To be definite, here we will visualize the model in terms of one of its
many applications: a solid particle in contact with its vapor. Atoms either
condense from the vapor, or evaporate from the solid, both causing the
interface to move. Imagine a situation in which atoms diffuse rapidly in the
vapor, but react slowly on the interface, so that the vapor maintains a
uniform composition and pressure. The vapor phase is in one equilibrium
state, and the solid phase is in another equilibrium state. The two phases,
however, are not in equilibrium with each other, so that one phase grows
at the expense of the other. The ingredients of this nonequilibrium
thermodynamic model follow.

1. Free Energy

Let y be the surface tension (i.e., the free energy per area of the
interface), which may depend on crystalline orientation. Let g be the
difference in the free energy density of the two phases (i.e., the free energy
increase associated with the condensation of unit volume of the solid). The
introduction of the solid particle into the vapor changes the free energy of
the entire system by

G = [ ydA + gV (2.1)

The integral extends over the interface area A4, and V' is the volume of the
solid particle. We will assume that the particle is immersed in a large mass
of the vapor, so that g is constant as the reaction proceeds.



198 Z. Suo

When the surface tension is isotropic (i.e., independent of crystalline
orientation), G = yA + gV. Thermodynamics requires that the reaction
proceed to decrease the free energy. The surface tension is positive and
therefore strives to decrease the surface area. When the solid surface is
concave, such as a dent on a flat surface, y favors condensation. When the
solid surface is convex, such as a hillock on the surface, y favors vaporiza-
tion. The free energy density difference between the two phases, g, can be
either positive or negative. When g > 0, it favors vaporization and reduces
the particle volume. When g < 0, it favors condensation and increases the
particle volume. In general, both y and g affect interface motion.

2. Virtual Migration and Driving Pressure

Free energy by itself is insufficient to determine the particle shape
change, because countless ways of shape change would reduce the free
energy. To evolve the particle shape, the model needs more ingredients.

Figure 1 illustrates the motion of an interface by mass exchange be-
tween the solid and the vapor. A virtual migration of the interface is a
small movement in the direction normal to the interface that need not

FiG. 1. An interface between a solid and a vapor undergoes a virtual motion. The
magnitude of the virtual migration, 8r, , should be small, and may vary over the interface.
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obey any kinetic law. The amount of the motion, ér,, can differ from point
to point over the interface. Associated with the virtual migration, the free
energy varies by 8G. Define a thermodynamic force, &, as the free energy
decrease associated with adding unit volume of atoms to the particle,
namely,

[#br, d4 = ~5G. (2.2)

The integral extends over the interface area. The virtual motion, ér,, is an
arbitrary function of the position on the interface, and (2.2) uniquely
defines the quantity & at every point on the surface; an explicit formula is
given later. The quantity has a unit of pressure (force/area or
energy/volume), and has been variably called driving pressure, driving
stress, or driving traction.

3. Kinetic Law

Let v, be the actual velocity of the interface in the direction normal to
the interface (i.e., the volume of atoms added to the particle per area per
time). The actual velocity is taken to be a function of the driving pressure.
Specifically, the velocity is taken to be linearly proportional to the driving
pressure:

v, = LP. 2.3)

Here L is the mobility of the interface. This quantity will be used as a
phenomenological parameter of the model, to be determined by comparing
model predictions with experimental observations. Thermodynamics re-
quires that the interface move in the direction that reduces the free energy
G, so that L > 0. Extension to nonlinear kinetic relations can be made
(e.g., Loge and Suo, 1996).

The considerations above define the dynamics of surface motion. At a
given time, the free energy variation determines the driving pressure, and
the kinetic law updates the particle shape for a small time step. The
process repeats for many time steps to evolve the surface.

The driving force is defined at every point on the surface, which is then
used to specify the kinetic law. Such a kinetic law is local in that the rate at
a point only depends on the force at this point. By no means is such a law
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universally correct. For example, crystal may grow at a step around a screw
dislocation. The present approach is subject to the common restriction of a
continuum theory: the theory applies when the length scale of interest is
much larger than the length scale characteristic of defects.

4. Atomic Origin of Interface Migration Mobility

Before continuing with the phenomenological treatment, we make a
digression and consider briefly the atomistic origin of L. One can obtain L
from an atomistic picture of the reaction process. Formulas obtained this
way may give approximately correct dependence on variables such as
temperature, with parameters such as activation energy fitted to experi-
mental data.

Consider, for example, an interface of two phases of the same composi-
tion, e.g., a grain boundary. The interface moves as atoms leave one phase,
cross the interface, and attach to the other phase. Turnbull (1956) showed
that the interface velocity is linear in the driving pressure if Q% < kT,
where () is the atomic volume, k Boltzmann’s constant, and 7 the
absolute temperature. The interface motion involves the same atomic
process as self-diffusion on the interface. The interface mobility L relates
to the self-diffusivity on the interface D by L = Q¥3D/kT. The self-
diffusivity is given approximately by D = vb? exp(—q/kT), where v is the
frequency of atomic vibration, b the atomic spacing, and g the activation
energy for one atom to jump from one position to another.

This connection between L and D, however, is an oversimplification.
For example, impurity atoms segregated to a grain boundary can affect L
and D disproportionally. This empirical fact has long been used in ceramic
sintering; impurities are added to inhibit grain growth without retarding
densification.

As another example, consider a single-element crystal in contact with its
vapor. Atoms in the two phases exchange at the interface by evaporation
and condensation. Mullins (1957) showed for this case L =
PoQ*QQmm)~/2(kT) */?, where p, is the vapor pressure in equilibrium
with the flat solid surface, and m the mass per atom. The process
considered by Mullins involves the rate of the atoms of the vapor hitting
the surface, and the atoms of the solid emitting to the vapor. The reaction
on the surface is instantaneous, with no activation barrier. In general,
however, a multielement crystal and a vapor of several molecular species
react on the interface with activation barriers.
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B. EQUATION OF MOTION WHEN SURFACE TENSION
1S ISOTROPIC

When surface tension is isotropic, the solid-vapor interface at a given
time is usually a smooth surface in three dimensions. The surface has the
properties commonly studied in differential geometry: the area of a sur-
face element dA; the unit vector normal to the surface n, taken to direct
the vapor phase; and the principal radii of curvature R, and R,, taken to
be positive for a convex particle. Of particular interest is the sum of the
principal curvatures,

K 1 1
=— 4+ —.
Rl R2

Associated with the virtual migration 8r,, the interface area varies by
8A = [ Kér, dA

and the particle volume varies by
sV = [ 8r,dA.

The integrals extend over the interface.

When the surface tension is isotropic, the free energy is G = yA4 + gV.
Consequently, associated with the virtual motion of the surface, the free
energy varies by

8G =[(y1<+g)5r,,d,4. (2.4)

A comparison of (2.4) and (2.2) gives
P=—yK —g. (2.5)

This equation expresses the driving pressure in terms of the geometric
parameter, K, and the energetic quantities, y and g. As expected, y tends
to drive the surface in the direction toward the center of curvature, and g
tends to cause the solid to shrink if g > 0.

A combination of (2.3) and (2.5) leads to

v, = —L(yK + g). (2.6)

This partial differential equation governs the interface motion.
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Equation (2.5) contains the special case % = —vyK, known as the
Laplace-Young relation for liquid films (e.g., Isenberg, 1978), where &£ is
the pressure difference between the two neighboring bubbles. This relation
results from the equilibrium of a liquid film under the pressure difference
and the surface tension. Such interpretations are misleading for a phase
boundary in solid state.

C. WEAK STATEMENT AND GALERKIN METHOD

The partial differential equation (2.6) is not a good way to look at the
general problem for several reasons. First, (2.6) is incorrect when surface
tension is anisotropic. Second, because the problem in general has to be
analyzed approximately, a partial differential equation need not be a good
starting point. The following weak statement circumvents the difficulties of
anisotropy, and leads to the Galerkin method in numerical analysis. Other
merits of the weak statement will become evident as the subject develops.

Completely ignore Section B, and start from Section A again. Replace
the driving pressure % in (2.2) with the interface velocity v, by using the
kinetic law (2.3), giving

13}
ff 5r,dA = —8G. Q.7

Make the following statement: the actual velocity, v,, must satisfy (2.7) for
virtual migration 8r, of arbitrary distribution on the interface. Following
the terminology of variational calculus, we refer to this as the weak
statement of the problem.

One may find an approximate interface velocity that satisfies (2.7) for a
family of virtual motions (instead of arbitrary virtual motions). Obviously,
the larger the family, the more accurate the approximation. This consider-
ation leads to the Galerkin method, a formal presentation of which
follows.

Model the surface with n degrees of freedom, writing ¢q,,...q, for the
generalized coordinates, and ¢, ,...4, for the generalized velocities. For
example, a sphere has one degree of freedom, its radius; a rod has two
degrees of freedom, its radius and height; a general surface may be
modeled by an assembly of triangles, with the positions of the vertexes
being the generalized coordinates. Describe a surface by expressing the
position vector on the surface, x, as a function of two surface coordinates,
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s, and s,, and the time ¢. Using the generalized coordinates, we express
the position vector as x(s;, $,;4¢;,---,4,), with the time implicitly con-
tained in the generalized coordinates.

The free energy is a function of the generalized coordinates,
G(q,,45,9,--.).- The generalized forces, f,,..., f,, are the differential
coefficients of the free energy, namely

8G = —f,8q, — f, 8q, — -+ —f, 8q,. 2.8

Once the free energy function is known, the generalized forces are
calculated from f; = —9G/dq,.

The virtual motion of the surface, &r,, is linear in the variations of the
generalized coordinates:

X

8&r, = 3 (n- %) 89, = 2. N;8q;. 29

1

The shape functions N, depend on the generalized coordinates. The
interface velocity is linear in the generalized velocities:

v, =Y, Ng. (2.10)

Substituting the above into the weak statement, (2.7), we obtain

Y H;4; 89, = X f,8q;, (2.11)
ij i
where
N.N.
ity
Hy= [ —dd. (2.12)

Equation (2.11) holds for arbitrary virtual changes 8q;, so that the coeffi-
cient for each 8q; must equal. Thus,

Z}Iijq.j =fi- (2.13)
j

Equation (2.13) is a set of linear algebraic equations for the generalized
velocities. Once solved, they update the generalized coordinates for a small
time step. The process is repeated for many steps to evolve into the
surface. Because the matrix H and the force column f depend on the
generalized coordinate column ¢, (2.13) is a nonlinear dynamical system.
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The physical interpretation of the matrix H is evident from (2.13): the
element of the matrix, H,;, is the resistant force in the g;-direction when
the state moves at unit velocity in g;-direction. We will call H the viscosity
matrix. From (2.12), H depends on the generalized coordinates but is
independent of the generalized velocities or the positions on the interface.

The viscosity matrix is symmetric and positive-definite.

D. GEOMETRIC VIEW

One can visualize the above formulation in geometric terms (Sun et al.,
1996, Yang and Suo, 1996). Imagine a hyperspace with the free energy as
the vertical axis, and the generalized coordinates as the horizontal axes.
The free-energy function, G(q,, g,, g5, - - .), is a surface in this space, to be
called the energy landscape. A point on the landscape represents in
general a nonequilibrium state of the system, described with a set of values
of the generalized coordinates and a value of the free energy. The bottoms
of valleys on the landscape represent equilibrium states of the system.

A curve on the landscape represents an evolution path of the system.
Thermodynamics requires that the system evolve to reduce the free
energy, and therefore the evolution path be a descending curve on the
landscape. Starting from any point other than a valley bottom on the
landscape, infinite descending curves exist. Consequently, thermodynamics
by itself does not set the evolution path. Nor does thermodynamics select
one valley as a final equilibrium state among several valleys. The evolution
path is set by thermodynamics and kinetics acting together.

At a point on the landscape, the slopes of the landscape represent the
generalized forces. The Galerkin procedure assigns a viscosity matrix H at
every point on the landscape. The generalized velocities are determined
by g = H 'f, which gives the direction and magnitude of the incre-
mental motion on the landscape. The evolution path is thus determined
incrementally.

This global, geometric view does not add any new information to the
problem, but does give an intuitive feel for a complex system. If the energy
landscape contains several valleys, the one that will be reached by the
system as the final equilibrium state will also depend on kinetics. A change
in the kinetic parameters, without changing the energy landscape, may
shift the system from moving to one valley to another. An example is given
in Section VLB. In the language of nonlinear dynamics, we say that the
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change of kinetic parameters changes the basins of attraction. Clearly, this
is a universal theme of material processing.

E. VARIATIONAL PRINCIPLE

The following variational principle is equivalent to the weak statement
in Section C. In numerical analysis, these two forms lead to an identical set
of ordinary differential equations. In the remainder of the article, we will
use the weak statement exclusively. The variational principle is included
here for completeness.

Let w be a virtual interface velocity distribution, which need not satisfy
any kinetic law. Associated with the virtual velocity, the free energy
changes at rate G. Introduce a functional

-2

. w
H_G+[2L dA, (2.14)
which is a combination of the virtual free-energy rate and a term associ-
ated with the virtual rate. The functional is purely a mathematical con-
struct, and has no clear physical meaning. Given an arbitrary virtual
velocity distribution @, one can compute a value of II.

The variational principle is now stated: Of all the virtual velocity
distribution @, the actual distribution v, minimizes II.

The proof of the principle follows. According to (2.2), the virtual free
energy rate is

G(@) = - [#Bd4,
which is linear in the virtual velocity. Consequently, the difference in II is

—2
. v @
(o + - =G(@ 2o —
(@ +v,) — I(v,) G(w)+/ . wdA+f LA
The actual velocity satisfies the kinetic relation v, /L =.%. According to
(2.2), the sum of the first two terms vanishes. Thus,

52
(@ +v,) — M(v,) = j TR

This is nonnegative for any virtual velocity distribution, hence the proof.
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F. TRIPLE JUNCTION; EQUILIBRIUM OR NONEQUILIBRIUM

1. Force on Triple Junction

If the solid particle is polycrystalline, the free energy becomes
G =y Ag + v, A, +8V. (2.15)

Here v, is the surface tension of the solid-vapor interface, v, the surface
tension of the grain boundaries, 4 the area of the interface, and A4, the \
area of the grain boundaries. For simplicity, both surface tensions are
taken to be isotropic.

As an example, Figure 2 shows that a grain boundary and two surfaces
form a triple junction, i.e., a line in the third dimension. The length of the
junction is /, and the two surfaces meet at angle ¥ (i.e., the dihedral
angle). Move the junction by 8y and the surfaces by &r,, resulting in a
virtual change in the free energy, 8G. Define the driving force on the
triple junction, f, and the driving force on the surface, £, simultaneously
by

flsy + f%r"dA = -5G. (2.16)

This is an extension of (2.2).
We may postulate separate kinetic laws for the junction and surface
motion:

y=Lf,v,=LP, (217

where y is the velocity of the triple junction, L, the junction mobility,
and L the surface mobility. Equations (2.16) and (2.17) complete the
modification.

One can find an explicit expression for the force on the triple junction.
When the junction moves by distance 8y, the area of the grain boundary

% "

Ys

*

& <
Y
=

FIG. 2. A triple junction formed by a grain boundary and two free surfaces.
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changes by /8y, and the area of the two surfaces changes by
—2cos(W¥ /2)I8y. Consequently, associated with the virtual motion of the
junction and the surfaces, the free energy changes by

v
6G = (—275 cos — + yb)ISy + f(ysK+g) or,dA. (2.18)

A comparison of (2.16) and (2.18) gives the expressions for the two driving
forces:

v
f =2y, cos 5 " e P = —yK—g. (2.19)

The driving force on the junction, f, has a clear interpretation: it is the
sum of the surface tensions projected along the y-axis. In this example,
because of symmetry, we only need to consider the motion in the y
direction. If the junction can move in both x and y directions, there are
driving forces in both directions.

One can also include junction motion into the weak statement. Replace
the forces in (2.16) with the velocities by using the kinetic laws (2.17),
giving

UII

y
sy + [ = ér,dAd = —8G. .
L y /L r, dA 8G (2.20)

The actual velocities, y and v, , satisfy (2.20) for arbitrary virtual motions,
8y and 8r,. In this weak statement, the surface tension for both the grain
boundary and the surfaces can be anisotropic, provided the free energy G
is evaluated by a surface integral of the surface tension.

2. Equilibrium Triple Junction

The triple junction is commonly assumed to be in equilibrium at all
times, even when the surfaces still move. That is, the driving forces on the
triple junction vanish at all times. For the present example, setting f = 0
in (2.19) results in the well-known expression for the equilibrium dihedral
angle ¥,:

v, Yo

COS — =

. 21
> " 2y, (221

This relation fixes the slope of the surfaces at the junction.
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The assumption of equilibrium junction is justified by the relative rate of
the junction motion and surface motion. It only takes a small number of
atomic adjustments to reach the equilibrium angle, so that the time
needed for the overall grain shape change is limited by the surface motion.
The idea can be made definite as follows. Let d be a length scale that one
likes to resolve from the model, e.g., the depth of the surface groove
caused by the grain boundary underneath. The effect of the junction
mobility is negligible if L ,d/L > 1.

Assume equilibrium junction is equivalent to prescribing an infinitely
large junction mobility. Consequently, the first term in the weak statement
(2.20) drops, which then becomes identical to (2.7). The weak statement
(2.7) simultaneously determines the surface velocity and enforces the triple
junction equilibrium. In applying the Galerkin procedure to the weak
statement (2.7), one need not fix the dihedral angle to the equilibrium
value. Rather, the equilibrium dihedral angle comes out as a part of the
solution, approximately in a short time, consistent with the level of
approximation of the entire surfaces.

In the terminology of variational calculus, the equilibrium dihedral
angle is a natural boundary condition, which is enforced by the weak
statement itself. The position of the end of the surface is an essential
boundary condition, which must be enforced in addition to the weak
statcment.

3. Nonequilibrium Triple Junction

Situations exist where the junction mobility plays a role. For example,
impurities segregated to the junctions may reduce the junction mobility,
retarding the overall surface motion. The effect should be pronounced if
the grain size is very smail.

From (2.21), the junction may reach equilibrium only when 7y, <
2y,—that is, when the grain boundary is energetically more favored than
two surfaces. If y, > 27q, equilibrium will not be reached until the grain
boundary is completely replaced by two parallel surfaces. In this case, a
finite junction mobility prevents the junction from running at an infinite
velocity.

Another example involves atomic decohesion along a grain boundary
when the body is subject to a tensile stress normal to the grain boundary.
The triple junction may be out of equilibrium, and the dihedral angle
between the two free surfaces approaches 0°, instead of the equilibrium
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value of (2.21). The unbalanced force at the triple junction may drive a
reaction that leads to the environmentally-assisted cleavage. Section VIII.C
discusses a similar situation.

III. Interface Migration Driven by Surface Tension
and Phase Difference

This section gives examples of interface migration under surface tension
and free energy density differences between the two phases. Finite ele-
ment schemes have been formulated on the basis of the weak statement
(Cocks and Gill, 1995; Du et al., 1996; Sun et al., 1997). It is too early to
judge them critically. Instead, this section gives an elementary demonstra-
tion of the Galerkin procedure, and describes several analytical solutions.

A. SPHERICAL PARTICLE IN A LARGE MASS OF VAPOR

When a small solid particle is introduced into a large mass of a vapor,
the particle may change both shape and volume, as atoms evaporate to, or
condense from, the vapor. We start with the simplest situation where the
surface tension is isotropic and the solid particle is spherical. The system
has only one degree of freedom, the radius of the sphere.

1. Free Energy

The introduction of a spherical particle of radius R into a large mass of
vapor changes the free energy by

4
G = 4wR%y + 3 7R3g. 3.0

Here vy is the surface tension, and g the free-energy density difference
between the two phases; y is always positive, but g can be either positive
or negative. If g > 0, the volume term reduces the free energy when the
particle shrinks. If g < 0, the volume term reduces the free energy when
the particle grows. We will concentrate on the case g < 0. Figure 3(a)
sketches the free energy as a function of the particle radius. As R
increases, G first increases when the surface term in (3.1) dominates, and
then decreases when the volume term dominates.
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FiG. 3. A small solid particle in contact with a large mass of its vapor (g < 0). a) Free
energy as a function of the particle radius. b) Particle of different initial radii evolve with the
time.

The free energy maximizes at a finite particle radius, R.. The signifi-
cance of this maximum is readily understood. Imagine a particle of radius
R # R,. Thermodynamics requires that the particle change size to reduce
G. If R <R,, the particle shrinks to reduce G. If R > R,, the particle
grows to reduce G. The critical particle radius is determined by setting
dG/dR = 0, giving
R, = Y (3.2)

8
The two energetic parameters, y and g, have different dimensions; their
ratio defines this length.

2. Kinetics

Section I1.B applies because the surface tension is isotropic. The driving
pressure on the surface of the spherical particle of radius R is

P = ——Ii——g. 3.3)
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The kinetic law (2.3) relates the surface velocity to the driving pressure:

R _ (> (.4)
— = —L| = +g]|. .
di (R g)

This ordinary differential equation governs the particle radius as a func-

tion of the time, R(z). The energetic competition shows up again: the

particle growth rate is positive if R > —2vy/g, and negative if R < —2v/g.
Let R, be the particle radius at time ¢ = 0. The solution to (3.4) is

R—R)+R In|———| = —Lgt. 3.5
( o) ‘nRo—RC g (3.5)

Figure 3(b) sketches the radius as a function of the time. The behavior
depends on the initial radius. A supercritical particle (R, > R,) grows with
the time without limit. A subcritical particle (R, < R,) shrinks and
disappears.

B. ANISOTROPIC SURFACE TENSION: ROD- OR
PLATE-SHAPED PARTICLES

In the example above, the free energy alone decides whether the
particle grows or shrinks, and the kinetics sets the time. This division in
roles between energies and kinetics comes about because the system has
only one degree of freedom. As discussed in Section 11.D, when the system
has more than one degree of freedom, the free energy alone does not
determine the evolution path or the final equilibrium state. The following
example has two degrees of freedom, and is used to illustrate the Galerkin
procedure.

Imagine a crystal having anisotropic surface tension such that it grows to
a prism with a square cross section. When a small particle of such a crystal
is introduced into its vapor, it has two degrees of freedom: the base side B
and the height C. The surface tensions on the prism bases and sides are vy,
and y,, and the mobilities are L, and L,. When the crystal grows by unit
volume at the expense of the vapor, the phase change alone increases the
free energy by g. The total free energy of the system, relative to the vapor
without the particle, is

G(B,C) = 2y,B* + 4y, BC + gB*C. (3.6)
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Associated with the virtual changes 6B and 8C, the free energy varies by
8G = (4y,B + 4v,C + 2gBC) 8B + (4y,B + gB*) 6C. (3.7)
The kinetic term on the left-hand side of (2.7) is
BBC CB?

12
=2 = 5B + 5C. 3.8
fL orydA = -~ 2L, @.8)

The weak statement requires that the sum of the two equations above
vanish. Collect the coefficients of 6B and 8C, giving

. 4 .
B= —LZ(% + %—2 + Zg),C - —Ll(% + 2g). (3.9)
These are coupled ordinary differential equations, to be integrated numer-
ically once the initial particle dimensions are given. No numerical results
will be presented here.

Brada et al. (1996) have used this approach to study coarsening of grains
of a crystal with high surface-tension anisotropy. See Carter et al. (1995)

for a demonstration of the effects of surface-tension anisotropy.

C. SELF-SIMILAR PROFILE: THERMAL GROOVING

In a polycrystalline particle, a grain boundary intersects with the particle
surface, forming a triple junction, Figure 2. When heated, the surface
grooves at the triple junction. The problem was solved by Mullins (1957).
The surface motion reduces the grain-boundary area but increases the
surface area, so that the total free energy decreases. Mass relocates by
either evaporation or surface diffusion. This section summarizes Mullins’
analysis for evaporation; Section VI.C will summarize his analysis for
surface diffusion. When the groove depth d is so small that gd/y — 0, the
effect of g on grooving is negligible. Mullins assumed that g = 0, namely,
the vapor is in equilibrium with the flat solid surface. The groove depth is
taken to be much smaller than the grain size, so that the two grains in
Figure 2 are infinitely large. This is a two-dimensional problem in the
plane normal to the triple junction.

In Figure 2, the x-axis coincides with the surface remote from the
groove, and the y-axis with the grain boundary. Describe the surface shape
at time ¢ by function y(x,¢). The curvature of the surface is

3%y /dx*
[1+ ay/an?]”*
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The velocity normal to the surface is
dy/dt
= 1/2°
[1 + (ﬁy/dx)zl

U,

The equation of motion (2.6) becomes

dy 3%y /dx?

S EEE—— (3.10)
Jt * 1+ (dy/ax)’

The initial and boundary conditions are as follows. The surface is
initially flat, i.e.

y(x,0) = 0. 3.11)
The surface remote from the groove is immobile at all times:
y(£o0o,1) = 0. (3.12)

The triple junction is taken to be in equilibrium during grooving, so that
the two surfaces meet at the equilibrium dihedral angle, ¥,, given by
(2.21). This dihedral angle fixes the slope of the surface at the triple
junction:

cos(¥,/2) Vb

sin(¥,/2) (4y2 — y2)?

(3.13)

 50.0)
J— 1) = =
axy "

The partial differential equation (3.10), the initial condition (3.11), and the
boundary conditions (3.12) and (3.13) determine the evolving surface
profile, y(x, t).

The initial geometry has no length scale, but the time and the mobility
set a length scale, y/Ly,t. Consequently, the groove grows with a self-
similar profile. Define the dimensionless coordinates:

X v y
VLt T VLt '
Describe the groove profile by a function Y(X). The partial differential
equation (3.10) becomes an ordinary differential equation

. dY)2
+ (E

X = 3.149)

a’y

2 (XdY Y) 0 (3.15)
W+ = (0. .

X

The initial condition (3.11) and the boundary condition (3.12) both become
Y() = 0. (3.16)
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The boundary condition (3.13) becomes
4 Y(0) 3.17
X =m. .

The boundary-value problem (3.15)~(3.17) is integrated numerically (Sun
et al., 1997). Figure 4 shows the groove profile for various dihedral angles.
For a system with a larger ratio v,/ % the dihedral angle ¥, is smaller,
and the groove is deeper.

When the ratio y,/7, is small, the slope of the surface, dY/dX, is small.
Dropping the high-order term (dY/dX )2 in (3.15), the ordinary differential
equation is linear, so that the groove depth must be linear in m. Mullins’
(1957) calculation showed that, under the small-slope approximation, the
groove depth is

d =~ 1.13my/Lyt . (3.18)

Figure 5 plots the numerical solutions of the groove depth determined by
both the exact and the linearized equations, indicating that Mullins’ linear
approximation is good for most purposes. The exact nonlinear solution has
been used as a benchmark to check the accuracy of a finite element code
(Sun et al., 1997).
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FiG. 4. The profile of the groove over a grain-boundary caused by evaporation.
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flG. 5. The groove depth as a function of parameter m, which relates to the ratio v,/ Y.
by (3.13). '

D. STEADY-STATE PROFILE

1. General Solution

Mullins (1956) studied the steady-state surface motion, i.e., the entire
surface moves in the same direction at the same velocity. The motion is
motivated by surface tension, and the mass transport mechanism is evapo-
ration-condensation. Both the surface tension and the mobility are taken
to be isotropic. The governing equation is (2.6), setting g = 0. Figure 6
shows a surface moves in the y-direction at velocity v. The coordinates x
and y move with the surface. A plane problem is considered where the
surface shape is invariant along the axis normal to the x-y plane.

ﬁv
y ds
A6|%Y
dx

Vn

X

FI1G. 6. Geometry of a steadily moving surface.

T U
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Let ds be the curve element, 6 the angle of the element from the x-axis.
Surface tension drives the surface to move toward the center of the
curvature. Consequently, the surface must concave in the direction of the
velocity, and the slope is restricted between —7/2 < 6 < /2. According
to our sign convention, the curvature, K = d6/ds, is positive on the entire

curve, and the normal surface speed is v, = —vcosf. Equation (2.6)
becomes
Lyd6
veos 6 = hay (3.19)
ds

Observing that cos 8 ds = dx, one readily integrates the above equation,
giving

L
x = ntd 0+ x,, (3.20)
v

where x, is a constant to be determined by the boundary conditions.
Similarly, with sin 8 ds = dy, one integrates (3.19) and obtains

L
y=— =y In(cos 6) + y,, 3.2
v

where y, is another constant to be determined by the boundary conditions.
Equations (3.20) and (3.21) together describe the shape of the steadily
moving surface, with 9 as a parameter. The following paragraphs illustrate
simple applications.

2. Steady-State Grooving

When the groove size becomes appreciable relative to the grain size, the
grooves of two adjacent grain boundaries interact, and the self-similar
solution in Section IIL.C is no longer valid. The particle surface may
recede with a profile and velocity independent of the time. Consider an
idealized geometry with periodic grain boundaries of spacing D, Figure 7.
The dihedral angle ¥ relates to the ratio v,/ by (2.21). The surfaces
move down to decrease the area of the grain boundaries, with no further

= i

Fic. 7. Steady-state grooving over periodic grain boundaries caused by evaporation.
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chfmge in the surface area. The slopes are 6 = + (7 — V) /2 at the two
gdjacent triple junctions x = +D /2. With these as the boundary condi-
tions, (3.20) determines the velocity:

_ Ly,
v =(m=¥)—=, (3.22)

which is inversely proportional to the grain size. Equation (3.21) deter-
mines the groove depth:
4
d In{sin ?)

DT aTv (3.23)

3. Velocity of an Abnormally Growing Grain

Under certain conditions, in a polycrystal one grain grows much larger
than the others, at the expense of the neighboring grains (Hillert, 1965). In
Flg}xre 7 replace the vapor phase with the large grain, and keep the small
grains of size D. For one reason or another, the small grains do not grow,
but the boundary between the large grain and the small grains moves with
the mobility L,. All the grain boundaries have the same surface tension
Y»» S0 that the dihedral angle is ¥ = 27 /3. Equation (3.22) becomes

mL,y,

3D (3.24)

The large grain grows at a velocity inversely proportional to the size of the
small grains.

E. GRAIN-BOUNDARY MIGRATION IN A THIN FiLM; EFFECT OF
SURFACE EVAPORATION

Consider a polycrystalline film on a single crystal substrate. The grains
have a columnar structure. Due to crystalline anisotropy, some grains have
lower film-surface tension and film-substrate interface tension than other
grains. When the film is heated, the grains with low combined surface and
interface tensions grow at the expense of other grains. The survival grains
may have (in-plane) diameters much larger than the film thickness.

For example, Thompson et al. (1990) studied a thin Au film on a (100)
surface of NaCl substrate. When the film is deposited at room tempera-
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ture, the Au grains are very small and are of several orientations. After
anneal at 325°C for three hours, the grains grow and the survival grains are
predominantly of (111)Au || (001)NaCl, with two in-plane orientations,
[110]Au |l [110INaCl and [110]Au || [110]NaCl. The two types of grains are
crystallographically equivalent, and therefore have the same free energy.
When the equivalent grains impinge, they stop growing. The NaCl sub-
strate has a fourfold symmetry, and the (111) Au grains have a threefold
symmetry. Minimization of the free energy in this case does not require
lattice matching.

Yet another phenomenon may intervene: grooving at the intersections
of the grain boundaries and the film surface may break the film. Assuming
that the grain boundaries are immobile, Srolovitz and Safran (1986) and
Miller et al. (1990) showed that the film breaks into islands if the ratio of
the grain size to the film thickness exceeds a critical value. Miller et al.
(1990) demonstrated that the prediction is consistent with the observation
of a ZrO, film on a single crystal Al,O; substrate.

Clearly the two processes—grain-boundary migration and surface groov-
ing—compete to determine the fate of a polycrystalline film. Grain-
boundary migration may lead to a large-grained, continuous film. Surface
grooving may break the film into islands. Mullins (1958) analyzed the effect
of grooving on grain-boundary motion, where the surface grooves via
surface diffusion. He obtained a steady-state solution for a moving triple
junction, but left the velocity of the motion undetermined because the
grain-boundary motion was not analyzed. In simulating grain growth in
thin films, Frost et al. (1992) modeled the effect of grooving by setting a
threshold curvature in the kinetic law, below which grain boundaries
remain stationary.

Brokman et al. (1995) analyzed a grain boundary moving in a thin sheet,
including both surface diffusion and grain-boundary migration, which
allow them to determine the steady-state velocity. In an independent study,
Sun et al. (1997) analyzed a similar problem with either surface diffusion
or surface evaporation. The following discussion draws on these studies,
assuming surface evaporation. Surface diffusion will be discussed in Sec-
tion VI.D.

1. Grain-Boundary Motion When the Surface Remains Flat

First imagine that the surface of the film is immobile and remains flat as
the grain boundary migrates, Figure 8(a). The in-plane grain size is much
larger than the film thickness, so that we focus on one grain boundary and

Motions of Microscopic Surfaces in Materials 219

s Ys*

(a)

fe———>»

Yi i

(b)

l«—— > —>»

Yi

FIG. 8. A grain boundary migrates in a thin film. a) The free surface is immobile and
remains flat. b) The free surface grooves due to evaporation.

ignore all the others. The two grains, labeled as + and —, have different
surface tensions y," and 7, , and interface tensions y;" and 7y, . Denote
the grain-boundary tension by vy, , and the grain-boundary mobility by L, .
The grain boundary is taken to migrate to the right.

Because the film surface and the film-substrate interface are immobile,
at the triple junctions the surface tensions do not balance in the vertical
direction. Junction equilibrium in the horizontal direction determines the
two angles in Figure 8(a):

Y= v A A

sin g = ——— ,sin 6, = —————. (3.25)

Yo Vs

In the steady-state motion, the grain boundary is concave to the right, so
that the two angles must satisfy ¢ > 6,. Using (3.25), this condition
becomes

Yo+ v < v+ oy (3.26)

Thus, grain — must have smaller free energy than grain + for the grain
boundary to migrate to the right.
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The general solution (3.20) determines the grain-boundary velocity:

Lbe(¢_ 00)
V= —

27
; (3.27

In the limiting case when both ¢ and 6, are small, (3.25) and (3.27) give

LIy + %) — (v + ¥l
b=
h

This limiting result reproduces that of Thompson et al. (1990).

2. Simultaneous Grain-Boundary Migration and
Surface Evaporation

Now two kinetic processes occur simultaneously: the grain boundary
migrates at mobility L,, and the surface evaporates at mobility L, Figure
8(b). Assume that the vapor is in equilibrium with a flat-film surface, but
atoms at the triple junction can evaporate. The entire configuration moves
at a uniform speed v to the right. All the moving surfaces must concave in
the direction of the velocity. The surface of the new grain must be straight,
because a curved surface would concave to the wrong direction. Evapora-
tion causes the new grain to be thinner than the parent grain by d.

Equilibrium at the top triple junctions in both horizontal and vertical
directions requires that

() + () = ()
sin 6 = L % — % , Y. sina =y, cos 8. (3.28)
27b75

The film-substrate interface is immobile, so that the angle ¢ is the same as
in (3.25). The steadily moving grain boundary must concave in the direc-
tion of the velocity. Consequently, the two angles must satisfy ¢ > 0,
namely
2 2 12
yimyrs ) X S T ) (3.29)
2%,

An application of (3.20) to the grain boundary and to the surface of
grain + gives

U(h - d) = L,,‘y,,(tf) - 0), Ud = L:Y:a'
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Solving the equations, we have the velocity

1
v = Z[Lbe(d’_ 0),L vy a] (3.30)

and the groove depth

d : (3.31)
LIy a

The thickness of the new grain depends, among other things, on the
mobility ratio.

The effect of surface evaporation on the grain-boundary motion may be
appreciated as follows. In the limiting case Ly < L,, the groove depth is
negligible compared to the film thickness (3.31). Even in this case, a tiny
amount of evaporation significantly affects the grain-boundary motion by
rotating the surfaces at the triple junction. Take, for example, y," = vy, =
Y- Without evaporation (Figure 8(a)), 6, = 0° the grain boundary can
move steadily to the right if ¢ > 0°, i.e., if the two grains have infinitesimal
differences in the film-substrate interface tensions. With evaporation (Fig-
ure 8(b)), 6 = 30°% the grain boundary can move steadily to the right if
¢ > 30°, i.e., if the two grains have a finite difference in the film-substrate
interface tensions.

On the basis of the weak statement (2.7), Sun et al. (1997) used finite
elements to simulate the non-steady motion. When ¢ > 6, an initial
configuration quite different from the steady-state quickly settles down to
the steady-state. When ¢ < 6, the grain boundary drags the triple junction
toward the substrate, and finally breaks the film.

F. STEADY-MOVING INTERFACE DRIVEN BY SURFACE TENSION
AND PHASE DIFFERENCE

Under the small slope assumption, Brokman et al. (1995) gave an
approximate steady-state solution for an interface driven by both surface
tension and phase difference. The exact steady-state solution to the full
nonlinear equation (2.6) follows. The problem has a length scale,

I'=vy/8. (3.32)
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With the reference to Figure 6, v, = —vcos 6 and K = d6/ds, (2.6)
becomes
ds do

—_=—_— 3.33
l ccosf—1 ( )

with the dimensionless constant being

U
c=—.
Lg

Noting that dx = cos ds and dy = sin 0 ds, one can integrate (3.33) to give

0+ 1 [V1—c?sing L %o 2 o1
— 4 ———tan [ ——— | + =, %<
X ¢ ¢Vl —¢? a ¢ —cos 6 ! .30
~ = 3.34
! 0 1 anh Ve — 1sin 6 X, .
- — N—_— | + —, >
¢ cvert-1 an ¢ —cosé l ¢
1
X= ——1n|ccos0~ll+&. (3.39)
/ c I

Here x, and y, are integration constants to be determined by boundary
conditions.

IV. Interface Migration in the Presence of Stress and Electric Fields

In many material processes, elastic and electrostatic fields allow addi-
tional means of free-energy variation. For example, during a phase transi-
tion, the difference in the crystalline structures of the two phases induces a
stress field (e.g., Eshelby, 1970; Abeyartne and Knowles, 1990; Lusk, 1994;
Rosakis and Tsai, 1994). In a polycrystalline film, grains of different
orientations have different elastic energy densities due to elastic or plastic
anisotropy (e.g., Sanchez and Arzt, 1992; Floro et al., 1994). In a ferroelec-
tric crystal, domains of different polar directions have different elastic and
electrostatic fields (e.g., Pompe et al., 1993; Roytburd 1993; Jiang, 1994).

The main concepts in Section II.A still apply, with the modification that
the free energy G includes the elastic energy and electrostatic energy.
This, in turn, requires that the stress and electric fields be solved as
boundary-value problems. After the fields are solved and the free energy
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G computed, (2.2) defines the driving pressure on an interface, #. The
kinetic law (2.3) then updates the position of the interface.

The weak statement (2.7) still applies. A two-step finite element method
would proceed as follows. At a given time, the first step solves the
boundary-value problem of the stress and electric fields by using a conven-
tional finite element code. The second step updates the interface position
according to (2.13), where the driving forces on interface nodes can be
calculated with a procedure described by Socrate and Parks (1993), and the
viscosity matrix calculated according to (2.12). The whole procedure re-
peats for the next time increment. The approach would allow a relatively
crude mesh to determine the elastic and electric field.

Often, the mismatch strain is too large to be accommodated elastically,
and dislocations appear to partially relieve the stress. Similarly, electric
charge carriers diffuse to partially accommodate the polarization mis-
match. Finite element approach could also treat relaxation due to com-
bined plastic deformation, electric conduction, and interface migration.
These important effects are beyond the scope of this article and will
be ignored. This section collects basic equations and gives elementary
demonstrations.

A. FREE ENERGY

1. Field Equations

Subject a solid insulator to a field of displacement u and electric
potential ¢. The strain tensor e and the electric field vector E are the
gradients:

1

€; = E(u,-,]-+uj,,-), E =-¢,. “.D
The conventional index notation is adopted. The insulator is separated
into domains by interfaces (or domain walls). Consider an interface be-
tween two domains labeled as + and —, with the unit vector normal to the
interface, n, pointing to domain +. Force t and charge o are externally
supplied on per unit area of the interface. The body force and the space
charge inside the domains are taken to be negligible. In a domain both
stress tensor o and electric displacement vector D are divergence free:

7;:=0, D,;=0. 4.2)
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Across the interface, they jump by

nloj—o;l =1,

nlD; = D/] = —w. 4.3)

Applying the divergence theorem, one obtains
[ tiu; da = /o,.,e,.,. dv, fw¢dA = fDiEi dv. (4.4)

The integrals extend over the interface area A4 and the volume V. The
equations above hold for any constitutive law.

2. Free-Energy Density Function

We will make the standard local equilibrium assumption: a free-energy
function exists for every phase in the crystal, even though the crystal as a
whole is not in equilibrium. At a fixed temperature, the Helmholtz free
energy per unit volume of a phase, W, is a function of the strain and the
electric displacement, W(e, D). When the state of the crystal varies, the
energy density varies by

dW = o, ;de; + E, dD,. (4.5)

Once the energy density function is prescribed, the field equations and the
boundary conditions define the boundary-value problem.

The crystal also stores energy in interfaces. Denote the surface energy
per unit area of an interface by y. An interface is assumed to be a sharp
transition within a few atomic layers, so that electro-mechanical field is
unaffected by the interface tension, and the interface tension unaffected
by the electro-mechanical field.

3. Free Energy of a Polydomain Crystal

Prescribe a distribution of traction t and electric potential ¢ on the
external surface of the crystal. On the part of the surface where the
electric potential is not prescribed, e.g., the interface between the crystal
and the air, we assume that negligible electric field lines escape from the
crystal. This is a good approximation for a crystal having a large permittiv-
ity, where the prescribed electric potential does work on the crystal, not on
the air.
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The combination of the energy function and the field equations defines
an electro-mechanical boundary-value problem. Once the field is solved,
the Gibbs free energy of the entire crystal is calculated from

G=fydA+/WdV—/¢wdA—fz,.u,.dA. (4.6)

The first integral extends over the interfaces, the second over the volume
of the body, the third over the potential-prescribed surface, and the fourth
over the traction-prescribed surface.

4. Deep-Well Approximation

So far, the free-energy density W can be an arbitrary function of the
electric displacements and strains. A useful approximation has often been
adopted. Figure 9(a) illustrates the free-energy density for a one-
dimensional model of a ferroelectric crystal at a fixed temperature. When
the temperature is far below the Curie point, the free-energy density has
two deep wells at D, and —D,, corresponding to the spontaneous polar
states. Due to crystal symmetry, the spontaneous states have the same free
energy, g. Figure 9(b) shows the D-E curve derived from the free energy
function, E = dW/dD. The peak, E_, is the field needed to switch polar-
ization uniformly over the entire crystal, which is often much larger than
the field needed to cause domain wall motion. Consequently, the state in
each domain is near one of the spontaneous states, with approximately a
linear D-E relation.

Consider in general a spontaneous state with the strain e'*), the electric
displacement D, and the Helmholtz free energy per unit volume g®.
Expand the free energy density function by the Taylor series around this
spontaneous state, retaining up to the quadratic terms:

1
W =g + EC:‘(J‘s/gl(eij — i) e — ef?)

1
+BP(D, = DD, - DY)
+ B, — DOy, — €) @7

The first-order terms vanish because the stress and the electric field vanish
at the spontaneous state. The coefficients C, B, and h characterize the
elastic, dielectric, and piezoelectric responses near the spontaneous state.
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FIG. 9. a) The free-energy density as a function of the electric displacement. The free
energy has deep wells when the crystal is in the ferroelastic state, far below the Curie
temperature. b) The elastic field vs electric displacement curve. Only the linear parts of the
curve near the spontaneous states are realized in a crystal.

The stress and the electric field are differential coefficients, (4.5), so that

o, = Clililey, — e + hiG (D, — D), (4.8)
E; = B(D, — D) + hig)(ey — ef). (4.9)
These linear relations are valid inside each domain. Together with the field

equations, they define a linear, coupled, electro-mechanical boundary-value
problem.
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B. ELLIPSOIDAL TRANSFORMATION PARTICLE IN INFINITE
MATRIX UNDER REMOTE LOADING

Numerical analysis is usually required to solve the boundary-value
problem above. Fortunately, many analytic solutions exist for an ellipsoid
inclusion in an infinite matrix subject to remote loads; see Osborn (1945)
for dielectric, Eshelby (1957) for elastic, and Dunn and Wienecke (1996)
for piezoelectric inclusions. The shape of ellipsoids is versatile enough to
model many phenomena. A nice feature common to this class of problems
is that all fields inside the ellipsoid are uniform. Here we will not list these
solutions, but will discuss the calculation of the free energy. The discussion
parallels that of Eshelby (1957) for an elastic inclusion.

Consider a transition from one solid phase to another. Without the
constraint of the parent phase, the new phase would have a spontaneous
strain e’, a spontaneous electric displacement D°, and a free energy change
per volume g. All the three quantities are relative to the parent phase.
When a small particle of the new phase grows inside the parent phase,
both phases have stress and electric field. No dislocations, free charges, or
other defects are present to relieve the field. Model the new phase particle
by an ellipsoid, and denote its surface area by 4 and volume by V. Model
the matrix as an infinite medium, and load it such that a uniform stress
o/ and a uniform electric field E;* prevail far away from the particle. The
free energy of the matrix in the absence of the particle, remotely loaded as
described above, is the reference state. The free energy G defined by (4.6)
is the sum of five contributions.

a) Surface energy

The phase boundary increases the free energy by
G = fydA. (4.10)

The integral extends over the ellipsoid surface. When the surface tension
is isotropic, G4 = yA. The surface energy resists particle growth.

b) Energy due to phase difference

When both phases are free from the stress and electric fields, the
free-energy change due to the phase difference is

Gy =gV. (4.11)
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In our sign convention, the phase difference resists particle growth if
g>0.

The following three terms arise from various fields. Owing to the
linearity of the problem, the free energy must be a bilinear form of the
spontaneous quantities e;; and D; and the applied loads o,/ and E/.
They may be grouped according to their physical significance.

c) Work done by the applied load through spontaneous strain and electric
displacement

The work done by the applied load on the spontaneous strain and
electric displacement changes the free energy by
Gy = —(ajle; + E/D;)V. (4.12)

A positive work reduces the free energy, and thereby motivates particle
growth.

d) Energy due to strain and polarization misfit

In the absence of the applied loads, the spontaneous strain and electric
displacement cause fields in the matrix and the inclusion. Let o‘,-J’- and E/
be the fields in the inclusion; they are linear in ¢}, and D, and various
coefficients may be found in the above cited papers. The free-energy
change due to the misfit is

1
Gy = ~ 5 (ale}, + E/D})V. (4.13)

2

This contribution is a positive-definite quadratic form of e}, and D}, and
resists particle growth.

e) Energy due to heterogeneity (i.e., modulus difference)

Imagine two infinite bodies, each subject to o;' and E/ at the infinity.
One body is an infinite matrix without inclusion, and the other body is an
infinite matrix containing an ellipsoidal inclusion. The constitutive laws are
given by (4.8) and (4.9) with the spontaneous strain and electric displace-
ment removed; C, B, and A are moduli for the matrix, and C*, 8*, and h*
for the inclusion. The first body has uniform strain e and electric displace-

ment D everywhere, and the second body has strain e* and electric
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displacement D* in the inclusion. The free-energy difference between the
two bodies is

et * _ Q% *
ijpq Ciqu)eijepq+(ﬁij Bij)DiDj

1
Gy = —5[(0

+ (hyy — hi) e DF + eftDi)] V.

This contribution is quadratic in o, and E#, and either motivates or

resists particle growth, depending on the relative moduli of the two phases.

(4.14)

C. GROWTH OF A SPHERICAL PARTICLE OF DILATION

As an illustration, consider two phases of an identical chemical composi-
tion but with different crystalline structures. Without the constraint of the
parent phase, the new phase would have a pure volume expansion with
linear strain e,, and a free-energy change per volume g, both being
relative to the parent phase. The parent phase is loaded remotely by a
hydrostatic stress o. The electric effect is absent. We will assume that the
new phase grows like a spherical particle in an infinite matrix. The system
has one degree of freedom, the radius of the particle, R. Such an
assumption excludes shape change, which may be important in some
phenomena; for example, Johnson and Cahn (1984) showed that
the spherical particle is unstable against shape change under certain
conditions.

The elastic stress field for a spherical inclusion in an infinite matrix can
be readily solved. For simplicity, we first assume that the two phases have
similar elastic constants, with Y being Young’s modulus, and » Poisson’s
ratio. The free energy change due to the introduction of the particle into
the matrix is
Ye?

. (4.15)

-V

4
G(R) = 4wR*> + 3 mR*| g — 30e, + 1

The physical significance of each item is evident from the previous
discussion.

The free energy has the same dependence on the radius as in the
problem studied in Section III.A, so that the previous discussion applies.
The driving pressure is given by

dG 2y Ye?

P=—g o=~ —g 306~ 5
-V

— = 4.16
4mR* dR R (4.16)
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The radius changes at rate

dR L 2y 3 Ye?
— —_— —— + —_ .
dt R 8704 1,

4.17)

The solution to this ordinary differential equation is similar to (3.5).

Consider the case that the elastic constants for the two phases are
different. Denote the bulk modulus and shear modulus of the parent phase
by B=Y/3(1 —2v)and u = Y/2(1 + »), and B* and u* for the corre-
sponding quantities for the particle. The fourth term in (4.15) should be
modified to

3e2( 1 17!
- +t—1 . .
> |35 T 1 (4.18)

A fifth term should be added to (4.15),

0'2( 1 1 1 1 1 1\7!
— —_— e — —— + — —_—
2 \B B*) 3B 4u )\ 3B* * dul (4.19)

This term motivates particle growth if the new phase has a lower bulk
modulus than the parent phase.

D. GROWTH OF A 180° DOMAIN IN BARIUM TITANATE

Barium titanate (BaTiO;) undergoes a phase transition at 130°C. Fig-
ure 10 shows the unit cells of the two phases. Above 130°C, the crystal is
cubic, and the ions lie symmetrically in the unit cell. Between 0 and 130°C,
the crystal is tetragonal, and the ions lie asymmetrically in the unit cell.
We next concentrate on the changes at a fixed temperature between 0
and 130°C.

Depending on the position of the titanium ion relative to the center of
the unit cell, the crystal may have polar direction of any one of the six
variants. A load may shift the position of the titanium ion, and thereby
rotate the polar axis from one direction to another. An electric field may
rotate the polar direction by either 180° or 90°, but a stress may only rotate
it by 90°. A 180° polar rotation does not result in any strain; a 90° polar
rotation results in a strain.
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paraelectric, T > 130°C

ferroelectric, 0°C < T < 130°C

Ti4+ ‘ Ba2+ O 02-

F1G. 10. The crystal structures of barium titanate (BaTiO,). The high-temperature phase
is nonpolar. The low-temperature phase is polar and the Ti ion is off the cell center.

The crystal changes its state by domain-wall migration. The loads
needed to move the domain walls are much lower than the loads theoreti-
cally predicted to uniformly switch the crystal. In fact, the latter has never
been observed. Miller and Savage (1959) observed that the domain walls in
BaTiO; move at a wide range of velocities (107°-10"! m/s). The new
domains tend to start as spikes. In the following we review a model study
of the growth of a small 180° domain, assuming that the growing domain is
elliptic (Landauer, 1957; Loge and Suo, 1996). Rosakis and Jiang (1995)
showed that sharp tips can emerge from the growing domain; their analysis
will not be reviewed here.

Figure 11 illustrates the cross section of a cylindrical domain in a large
parent domain having the opposite polarization. Because both domains
have the identical spontaneous strain, the elastic and the piezoelectric
effects may be ignored compared to the dielectric effects. The problem is
further simplified by assuming isotropic domain wall energy, permittivity,
and mobility. To avoid solving an electrostatic problem for complex-shaped
inclusions, we approximate the cross section of the domain by a sequence
of ellipses, evolving the domain with two generalized coordinates, the
semi-axes «,; and a,.
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FIG. 11. A 180° domain grows in a parent phase driven by an electric field.

The free energy due to the introduction of the nucleus into the parent
crystal is

2maia, D?

Glay, a;) = yg — 2D E,mra ay + ——
’ ela, + a,)

(4.20)

Here, s is the perimeter of the ellipse, and ¢ is the permittivity. The first
term is the domain wall energy, which resists the growth and tends to make
the domain circular. The second term is the work term associated with
polarization reversal, which drives the nucleus to grow and tends to make
the nucleus circular. The third term is the depolarization energy induced
by the discontinuity of the spontaneous polarization, which strongly resists
the growth in the «, direction, but weakly resists the growth in the a,
direction.

The problem has a characteristic length, I, = ye/D}, which we will use
to normalize the semi-axes of the ellipse. Figure 12 shows the contours of
constant levels of free energy, normalized as G /(271,y). The loading level
for the simulation is ¢E, /D, = 0.05. The free-energy surface has a saddle
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point at «; = 13/, and «a, = 500/;, indicated by SP in Figure 12. The
physical origin of this saddle point is evident. Along either the axis a, = 0
or a, = 0, when the needle-shaped domain elongates, both the work term
and the depolarization energy vanish, and the domain-wall energy in-
creases the total free energy. Along a path with a large aspect ratio
a,/a;, the total free energy is low for both a very small and a very large
nucleus, and reaches a peak for an intermediate one. The fate of a nucleus
depends on its initial position on the thermodynamic surface. To decrease
the free energy, a very small nucleus shrinks, and a very large nucleus
grows. For a nucleus near the saddle point, its fate is determined by both
the energetics and the kinetics. In all cases, the free-energy landscape
alone does not determine the evolution path.

We next calculate the evolution path and rate. The differential equa-

tions (2.13) become
H]l H12 dl fl
= . (4.21)
[HZI HZZ]I:dZJ [f2]

€E/P, = 0.05
lo = EY/P2

T N
// / k 50—
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/
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FiG. 12. Free energy contours for a 180° domain nucleus.
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F1G. 13. The semi-axes of a 180° domain nucleus as functions of the time.

The expressions for the generalized forces and viscosities are given in Loge
and Suo (1996). Given initial semi-axes of a nucleus, we trace its evolution
by numerically integrating (4.31). The problem has a characteristic time,
t, = I5/(Ly), which is used to normalize the time. Figure 13 shows the
evolution of a nucleus of initial axes a, = 500/, and a, = 200{,. The
a,-axis increases almost linearly with the time after some initial adjust-
ment. The a;-axis decreases first, and then increases slowly relative to the
a,-axes. The domain grows to a long needle in the direction of sponta-
neous polarization, because of the large effect of the depolarization
energy.

E. EXPLICIT FORMULA FOR THE DRIVING PRESSURE

Eshelby (1956, 1970) called the following quantity the energy momen-
tum tensor

P. = ws,; — oer; — ED;. (4.22)

L

An interface separates domain + and domain —, with the unit normal
vector n pointing toward domain +. Denote the sum of the principal
curvatures of the interface by K. Assume that no external force or charge
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lie on the domain wall. Eshelby showed that, when the interface moves in
the direction n by distance &r,, the free energy of the crystal changes by

8G = [[vK = n(Pj~ PyIn)] br, dA. “23)

The interface tension 7y is taken to be isotropic. A comparison of (4.23)
with (2.2) gives the driving pressure on the interface

P = —yK + n(P}— P)n;. (4.24)

If medium - is taken to be a traction-free but strained solid, and
medium + the vacuum, (4.24) becomes

P=—yK—-W. (4.25)

Asaro and Tiller (1972) obtained this formula in analyzing surface motion.
The equation of motion (2.3) becomes

v, = —L(yK + W). (4.26)

V. Diffusion on Interface: Formulation

This section formulates mass diffusion on an interface. The interface
may be either a free surface, or a grain boundary. The diffusion species are
taken to be electrically neutral, so that only mass conservation need be
enforced. The free energy has the same contributions as before, e.g.,
surface tension, external work, and elastic energy.

A. GENERAL CONSIDERATIONS

1. Virtual Motion, Mass Conservation, and Interface Motion

Figure 14 illustrates in three dimensions a surface that represents either
a free surface or a grain boundary. Denote the unit vector normal to a
surface element by n. An arbitrary contour lies on the surface, with the
curve element dl, and the unit vector in the surface and normal to the
curve element m. At a point on the contour, m and n are perpendicular to
each other, and both are perpendicular to the tangent vector of the curve
at the point.
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Fic. 14. An interface in the third dimension. Also drawn is an arbitrary contour lying on
the interface.

Let 81 be a vector field on the interface, such that 1 - m is the number
of atoms crossing unit length of the curve. As before, § indicates a virtual
motion, namely, the number of atoms is small and need not obey any
kinetic law. Following Biot (1970), we refer to 8I as the virtual mass
displacement, to distinguish it from the atomic flux used below. Let 8¢ be
the number of atoms added to the interface per unit area. Consider the
interface area enclosed by the contour in Figure 14. Atoms move only on
the interface, so that the number of atoms added to the area equals the
number of atoms flowing in across the contour. Thus,

fagdA+9531-mdl=0. (5.1

The first integral extends over the area of the interface enclosed by the
contour, and the second over the contour. Equation (5.1) holds for
any contour on the interface. Recall the surface divergence theroem,
$6I - mdl = [ V-(81) dA, where the operator V is carried on the surface.
(Some writers signify the surface operator with V,.) Mass conservation
requirements can also be expressed in terms of the surface divergence:

8¢+ V- (8D =0. 5.2)

The atomic flux, J, is a vector field on the interface, such that J - m is
the number of atoms across per length per time. Let ¢ be the number of
atoms added to unit area of the interface in unit time. Mass conservation
requires an expression similar to (5.1),

fg’dA +¢J-md1=o, (5.3)
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and an expression similar to (5.2),

E+V-J=0. (5.4)

We next connect ¢ to the motion of the free surface and the grain
boundary. The expressions are similar between 8¢ and the virtual motion
of the interfaces. On a free surface, atoms of the solid diffuse from one
part of the surface to another. Atoms added to a surface element cause
the element to move in the direction toward the vacuum at the velocity
v, = Q€. Here Q is the volume per atom.

A grain boundary is taken to be in local equilibrium. The atoms inserted
to the grain boundary instantaneously crystallize, rendering the atomic
structure of the grain boundary invariant. Yet the inserted atoms may add
to either one of the two grains. Evidently, £ only determines the relative
motion of one grain with respect to the other, but not the migration of the
grain boundary itself. Denote the velocity of one grain relative to another
by Av,, being positive when the two grains recede from each other. The
atoms added to a grain-boundary element cause the two grains to drift
apart at velocity Av, = Q&.

The migration of the grain boundary is a degree of freedom independent
of the relative motion of the two grains, and should be treated by the
interface migration kinetics in the previous sections. Relative sliding of the
two grains are often taken to be fast; see Section VIL.B. Cocks (1992)
considered a locally nonequilibrium grain boundary, which will not be
reviewed here.

2. Defining Diffusion Driving Force

Associated with the virtual motion, 61 and 8¢, the free energy of the
system varies by 8G. Define the driving force for diffusion, F, as the
reduction of the free energy associated with one atom moving unit dis-
tance on the interface. That is,

waSIdA = -8G. (5.5)

The integral extends over the interface. Equation (5.5) holds for arbitrary
virtual motion. The force F is a vector on the interface, and has a unit of
force /atom.
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3. Kinetic Law
Following Herring (1951), we adopt a linear kinetic law:
J=MF. (5.6)

This equation defines the atomic mobility on the interface, M, which is a
second-order tensor at any one point on the interface, and may also vary
from point to point. In this article we will assume that the mobility is
independent of the crystalline direction. The mobility is determined in
practice either by observing a phenomenon such as surface grooving, or by
an atomistic simulation.

The mobility relates to the self-diffusivity by the Einstein relation,
M = D5/QkT, where D is the self-diffusivity on the interface, & the
effective thickness of atoms that participate in mass transport, () the
volume per atom, & Boltzmann’s constant, and T the absolute tempera-
ture. The self-diffusivity is approximately D = vb? exp(—q/kT), where v
is the frequency of atomic vibration, b the atomic spacing, and ¢ the
activation energy.

Atomic mobility on an interface is sensitive to impurities. When the
impurity atoms segregate to the interface, the interface has a much higher
impurity concentration than the bulk crystal. For example, adding a few
percents of copper to aluminum substantially slows down aluminum diffu-
sion on grain boundaries (Ames er al., 1970). This empirical fact has been
used to make electromigration-resistant interconnects in integrated
circuits.

B. DIFFERENTIAL EQUATIONS

The considerations above specify the surface diffusion problem. At a
given time, the free-energy variation determines the driving force, the
kinetic law relates the driving force to the flux, and the flux then updates
the surface shape according to mass conservation. The procedure repeats
for the next time increment.

These general considerations lead to two approaches for computation.
One approach, due to Herring (1951), defines the chemical potential on
the surface, leading to partial differential equations. This subsection lists
these equations. The following subsection formulates an alternative ap-
proach on the basis of a weak statement. The two subsections can be read
independently, in any order.
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1. Chemical Potential

First consider an interface which is a closed surface in the third
dimension. Herring (1951) defined the chemical potential of an interface
element, u, as the increase of the free energy associated with the addition
of one atom to the element. Thus,

86=fp,8§dA. (5.7
The integral extends over the surface. The chemical potential has a unit of

energy /atom.
Using (5.6) and the divergence theorem, one obtains that

6G

—[,U,V-(SI)dA

_ _f[V.(“‘o‘I)—(V/.L)-SI]dA

I¥

—95;1,61-md1+f(V;u)°81dA (5.8

A closed interface does not have a boundary curve, so that the line integral
vanishes.

A comparison of (5.5) and (5.8) equates the two area integrals for
arbitrary distribution of 81, so that the two integrands must be identical:

F= —Vu. 5.9

The driving force is the negative gradient of the chemical potential. As
expected, atoms diffuse from an interfacial element with high chemical
potential to an interfacial element with low chemical potential.

Next consider the continuity conditions at a triple junction. As discussed
in Section ILF, the local equilibrium assumption requires that the free-
energy variation associated with the translation of the junction vanish.
Consequently, the three interfaces meet at angles determined by the
surface tensions. These considerations apply here. In addition, the local
equilibrium assumption requires that the chemical potentials on the three
interfaces be equal at the triple junction.

To see the last statement, consider three interfaces that meet at a
straight line of length I. On the three interfaces I,, I,, and I; are the
components of the I vector pointing to the junction. The junction is
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neither a mass sink nor a mass source, so that the net mass coming to the
junction vanishes, 81, + 81, + 8I; = 0. Recall that the chemical potential
is the free-energy change associated with adding one atom. The free-en-
ergy change due to the atoms moving to the triple junction is 6G =
—ICp, 81) + p, 81, + py 615). A combination of the above two equations
give 8G = —I(p; — w3) 81 — I(p, — ;) 81,. The local equilibrium as-
sumption requires that G = 0 for any virtual mass displacements 81, and
81,. Consequently, the chemical potential is continuous across the triple

point, p; = p, = ps.

2. Free Surface
Mass conservation relates the velocity normal to the free surface to the
flux divergence:
v, + QV-J=0. (5.10)

As stated in Section IV.E, associated with adding atoms on the interface,
the free energy varies by

8G = /(7K+ W)Q 8¢ dA. (5.11)

The surface tension v is isotropic, the sum of the two-principle curvature
K is positive when the surface is convex, and W includes energy density
due both to stress and electric field. A comparison between (5.7) and (5.11)
gives the chemical potential on the surface,

n=Q(yK+W). (5.12)
The diffusion driving force is
F = —V(QyK + QW). (5.13)
A combination of (5.6), (5.10), and (5.13) gives
v, = MQ*Vi(yK + W). (5.14)

This partial differential equation governs the motion of a free surface
when the surface tension is isotropic.

3. Grain Boundary

Mass conservation relates the relative velocity of the two grains to the
flux divergence:

Av, + QV-J = 0. (5.15)
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Let o, be the normal stress component on the grain boundary. To insert
one atom to the grain boundary, the normal stress does work, varying the
free energy by

8G = - [ 5,0 8¢d4. (5.16)

Consequently, the chemical potential is

w=—Qac,. (5.17)
The driving force for diffusion on the grain boundary is

F = OVo,. (5.18)

Atoms diffuse on the grain boundary from an element of low-normal stress
to an element of high-normal stress. A combination of (5.6), (5.15), and
(5.18) gives

Av, = —MQ*V, . (5.19)

This partial differential equation governs the normal-stress distribution in
the grain boundary. ‘

C. WEAK STATEMENTS

1. Weak Statement When Interface Diffusion Is the Sole Rate Process

Ignore Section V.B and start from Section V.A again. Consider a
polycrystal particle with grain boundaries and free surfaces. We first
assume that the grain boundaries do not migrate and grains are rigid, so
that diffusion on interfaces is the only kinetic process. Replace the force in
(5.5) with the flux using the kinetic law (5.6), giving

J- ol
i dA = —-6G. (5.20)
The integral extends over all the interfaces in the system. Different
interfaces, of course, may have different mobilities. The actual flux J
satisfies (5.20) for all virtual motions that conserve mass, dictated by
(5.1)-(5.4) on each interface and by flux continuity at every triple junction.

This formulation circumvents the differential equations in Section V.B,
and the local quantities such as the chemical potential, the curvature of a
free surface, and the normal stress in a grain boundary. The statement also
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enforces local equilibrium at the triple junctions, namely, (a) the interfaces
meet at a junction with angles determined by the surface tensions, and (b)
the chemical potentials of all the interfaces are equal at the junction.
Should for any reason the two types of junction mobilities be finite,
one could add them to the weak statement in the manner described in
Section IL.F.

2. Variational Principle

Needleman and Rice (1980) formulated a variational principle that
includes grain-boundary diffusion, and devised a finite-element method on
the basis of the variational principle. Extensions have been made to
analyze several phenomena involving interface diffusion (e.g., Bower and
Freund, 1993, 1995; Cocks, 1994; McMeeking and Kuhn, 1992; Sofronis
and McMeeking, 1994; Suo and Wang, 1994; Svoboda and Riedel, 1995).
Following the steps in Section ILE, one can prove the following variational
principle. Of all virtual flux J that conserves mass, the actual flux mini-
mizes the functional

. J-J
H=G+deA. (5.21)

The weak statement and the variational principle lead to identical ordinary
differential equations that evolve the generalized coordinates.

3. Galerkin Procedure

Interface diffusion differs from interface migration in one significant
way. For interface diffusion, mass conservation is expressed by partial
differential equations, (5.2) and (5.4). When the shape of the surface is
axisymmetric or invariant in one direction, the surface divergence involves
one-dimensional differentiation, which can be integrated readily. The
Galerkin method proceeds as follows. Model the surface with n degrees of
freedom, writing g, ..., g, for the generalized coordinates, and ¢, ..., q,
for the generalized velocities. Following the same procedure as in Section
I1.C to compute the generalized forces f;, the virtual displacement of the
interfaces &r,, and the velocity of the interfaces v,. Integrate (5.2) and

no°

(5.4), and one obtains

&l = ZQi5qi, J= EQiqi’
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where Q; plays the similar role as the shape functions. The weak state-
ment (5.20) then leads to the same equation as (2.13), with the viscosity
matrix being

The shape of the surface is updated as before. We will demonstrate this
method in later sections.

4. Include Mass Conservation in Weak Statement

The procedure above, however, fails for a general surface in three
dimensions, because the surface divergence in (5.2) now consists of differ-
entiation of two surface coordinates. Consequently, one cannot integrate
(5.2) to relate 81 to 8gq,,..., 8q,. What happens physically is clear. When
the virtual motion of the surface is prescribed, mass conservation does not
fully determine the virtual mass displacement. That is, a general surface
requires degrees of freedom for &I, in addition to the degrees of
freedom for the surface shape. The following notes may be useful in this
connection.

Mass conservation is a constraint, much like incompressibility in defor-
mation analysis. One may use one of several methods in finite element
methodology to include mass conservation in the weak statement. Here we
use a penalty method as an illustration. Consider a closed surface for
simplicity. Allow 8¢ and 81 to vary independently, and associate a driving
force A with the new degree of freedom 8¢ + V - (81), writing

fF-SIdA+fA[5§+ V-(8D]d4 = - 6G. (5.22)

The integrals extend over the closed surface. Prescribe an independent
kinetic law for this new degree of freedom:

E+V-J =M\ (5.23)

The mobility M, is an adjustable parameter in the finite element analysis;
when M, is very small, mass conservation (5.4) is recovered approximately.
The weak statement becomes

J-81

1.
o +/E[g+v-,1][5§+ V-(8D]dA = —86G. (5.24)
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Incidentally, one can confirm that the parameter A has a simple physical
interpretation, A = — p.

D. Multiple Kinetic Processes

Consider a grain boundary which both migrates and acts as a diffusion
path. Let 8r, be the virtual migration of the grain boundary, 61 be the
virtual mass displacement on the grain boundary, and 8G be the free-
energy variation associated with the combined virtual motion. Define
the migration driving pressure % and the diffusion driving force F
simultaneously by

f@&rndA+fF-61dA= -5G. (5.25)

The integrals extend over the grain-boundary area. Equation (5.25) holds
for any mass-conserving virtual motion. Replacing the driving forces by the
kinetic laws of the two processes, (2.3) and (5.6), we have

5 J- 51
/ OO 4+ [ a4 = — 56, (5.26)
L M

The actual migration velocity v, and flux J satisfy this weak statement for
arbitrary mass-conserving virtnal motion.

Other kinetic processes can be similarly added to the weak statement.
Take, for example, a system of interfaces that move by diffusion on the
interfaces, and creep in the grains. The free energy consists of the external
work and various interface tensions. The problem was first treated by
Needleman and Rice (1980). Denote the virtual displacement field in the
grains by Su;, and the actual velocity field in the grains by v,. We will
assume that the solid is incompressible, i.e.,

Define the stress tensor, o;;, and the diffusion driving force F; on the same
basis, namely, as the energy-conjugates of their respective kinematic

quantities. Thus,

[ 0 6u, ;dA + [ F,51,d4 = - 5G. (5.28)
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Interface diffusion obeys the kinetic law (5.6). For this demonstration, the
grains deform according to a linear creep law:

0; = 0, &; + n(v; ; +v; ). (5.29)

Here, o,, is the mean stress; 7 is the viscosity of the material; and §;=1
when i = j, §;; = 0 when i # j.
Replacing the diffusion driving force with the flux by (5.6), and the stress
with the velocity gradient by (5.29), we obtain
J; 81
fani'jSMi’jd/q + f 7

The actual velocity and flux satisfy this weak statement for arbitrary
virtual motion.

d4 = —8G. (5.30)

VL. Shape Change due to Surface Diffusion under Surface Tension

This section gives examples of shape changes motivated by surface
tension. Most examples invoke surface diffusion as the only mass-transport
mechanism. One example involves simultaneous grain-boundary migration
and surface diffusion.

A. RAYLEIGH INSTABILITY

Over a century ago, John William Strutt Rayleigh noted that a jet of
water is unstable and breaks to droplets under the action of surface
tension. Similar phenomena occur in a solid state; see Rodel and Glaeser
(1990) for an experimental demonstration and literature survey. For exam-
ple, at a high temperature, a crack-like pore in a solid undergoes a
sequence of morphological changes until the crack breaks into many small
cavities. The crack first blunts its edge, from which finger-like channels
emerge, and the channels then break into small cavities. The morphologi-
cal changes shorten the distance over which mass transports, and therefore
accelerate the crack healing.

Assume that the surface tension is isotropic, and the free energy of the
system is the surface area times the surface tension. Of all figures of
the same volume, the sphere has the lowest surface area, and therefore the
lowest free energy. Why, then, does a cylinder evolve into many small
spheres, rather than one, single large sphere?
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Consider a long cylinder of radius R. Perturb the surface along the
longitudinal direction of the cylinder. It can be shown that the perturba-
tion reduces the surface area if its wavelength exceeds 2wR. Further,
Srolovitz and Safran (1986) compared a row of identical spheres with the
long cylinder having the same total volume, and noted that the spheres
have a smaller total surface area than the cylinder if the sphere radius
exceeds 3R /2. This sphere radius corresponds to an initial perturbation
wavelength of 9R /2. From these geometric (energetic) considerations, one
expects that a sequence of configurations exists, from a cylinder to a row of
spheres of large enough radii, with decreasing surface areas.

But these energetic considerations do not answer the question raised
above. The answer has to do with kinetics. It takes a short time for a
cylinder to evolve into a row of spheres. The spheres break the mass-
transport path, preventing the system from reaching the minimal energy
configuration, a single, large sphere. Here we have assumed a certain kind
of mass-transport mechanism, such as fluid flow or solid diffusion. If,
instead, the cylinder is sealed in a small bag, it will evolve to a single, large
sphere via vapor transport.

Nichols and Mullins (1965a, b) carried out a linear stability analysis of a
cylinder using several mass-transport mechanisms. For surface diffusion,
they showed that a perturbation of wavelength, A, = 2V2 wR, amplifies
most rapidly. If the initial imperfections of all wavelengths have a similar
amplitude, it is reasonable to expect that the finite sphere size corresponds
to wavelength A, .

In what follows, the Rayleigh instability is used to illustrate the applica-
tion of the weak statement. Surface-tension anisotropy is also included in
the end of the analysis.

1. Free Energy

Figure 15 illustrates a long cylinder of initial radius R with isotropic
surface tension 7. Perturb the cylinder to a wavy surface of revolution

2wz
r(z,t) = R| p(t) + £(t)cos — (6.1)

where r is the radius of the perturbed surface, z the axis of revolution,
¢ the time, pR the average radius, ¢R the amplitude, and A the wave-
length. If the family of the assumed virtual motion contains the exact
solution, the Galerkin procedure leads to the exact solution; otherwise the
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Fi1G. 15. Perturb a cylindrical surface to a surface of revolution with an undulation along
the axial direction.

Galerkin procedure leads to an approximate solution. In this case, the
family (6.1) happens to contain the exact solution of Nichols and Mullins
(19654, b).
Mass conservation requires that the volume be constant. Thus,
A
f wr’dz = wRAA, (6.2
0

which, to the leading term in &, gives p = 1 — £?/4. Thus, the surface
profile is

e? 27z

r=R[l1 - — + ecos —|. 6.3
Tt X (6.3)
The wavelength A is fixed in the linear stability analysis, so that this model
has only one generalized coordinate: the perturbation amplitude &.

The free energy of the column is the surface tension integrated over the
column surface. In one wavelength the free energy is

1/2
G = f)‘ 27rry[1 + (ﬁr/é‘z)2] / dz, (6.4)
0
and to the leading term in &,
T 27R\?
G =27RAy + 5R)\‘y (T) — 1|2 6.5)

If the quantity in the bracket is negative, the free energy decreases as &
increases. Consequently, the amplitude of a perturbation grows if its

wavelength exceeds a critical value
A. = 2mR. (6.6)

This reproduces the condition established by Rayleigh.
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2. Kinetics

Because of symmetry, J = 0 at z = 0. Mass conservation relates the flux
J(z) to the rate of the change of the volume between 0 and z. Thus,

d .z 5
2mrQJ = _E[o wr? dz. (6.7)
To the first order in the perturbation, the above is

J RA Gn[272) 2 (6.8)
() |

The weak statement (5.20) becomes
£
&= —, 6.9)
T
with the characteristic time 7 being
(271'R 2
- ()
A

For the initial condition & = £(0) at ¢t = 0, the solution to (6.9) is

-1

R4
AQ2M

T =

2wR\ 2 6.1
(A) . 6.10)

e(t) = e(O)exp(iT). (6.11)

Figure 16 shows the trend of the characteristic time (6.10). When A < 27R,
the perturbation increases the free energy, < 0, and the perturbation

A
0 My
R4

Y

2nR

FiG. 16. The characteristic time as a function of the wavelength.
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diminishes with the time. When A > 27 R, the perturbation decreases the
free energy, 7 > 0, and the perturbation amplifies with the time; = mini-
mizes at A, = 2V2 7R, agreeing with the analysis of Nichols and Mullins
(19654, b).

The conclusion above is made on the basis of the linear stability
analysis, where high-order terms of £ have been ignored. A complete
simulation of the surface evolution is necessary to take into account the
actual initial imperfection and large shape change (Nichols, 1976).

3. Surface-Tension Anisotropy

Imagine a crystal having transversely isotropic surface tension. The long
cylinder of circular cross section has constant surface tension y,. When
the cylinder becomes a surface of revolution, the surface tension is
nonuniform along the longitudinal direction. Denote 6 as the angle of the
normal vector of an arbitary crystal plane, measured from the normal
vector of the perfect cylinder. For small 6, the surface energy y can be
expanded in the powers of 6, assuming vy is a smooth function of 6. The
crystal is assumed to have such a symmetry that the crystal plane at 6 and
the crystal plane at — 6 have the identical surface energy. Consequently,
the expansion only contains the even powers of 6. Take only the first
two terms:

’}'(9) = ‘Y()(l - 002). (612)

Here the dimensionless number « indicates the anisotropy. When a > 0,
the crystal plane of the perfect cylinder has the largest surface tension of
all the neighboring crystal planes.

Perturb the cylinder to a surface of revolution with profile (6.3). To the
first order of &,

ar 2R

27z
= —-—— = € sin —) (6.13)
dz A A
The free energy (6.4), to the leading order in ¢, is
™ 27R\?
G = 2aRAy, + ER/\YO a- 2a)(T) —1]&2. (6.14)
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The cylinder is unstable when the perturbation wavelength exceeds a
critical value A,, given by

)\ 2
(2 ”R) =1-2a. (6.15)
T

If the surface tension is very anisotropic, i.e., a > 1/2, the cylinder is
unstable for perturbations of any wavelength.

B. A Row OF GRAINS—A MODEL WITH TwO DEGREES
OfF FREEDOM

An important distinction exists between a system of one degree of
freedom and a system of multiple degrees of freedom. For a system of one
degree of freedom (e.g., the spherical particle studied in Section II1.A), the
free energy is a function of the generalized coordinate (i.e., the particle
radius), represented by a curve in a plane with the free energy as the
vertical axis and the generalized coordinate as the horizontal axis. A point
on the curve represents a nonequilibrium state; a minimum point on the
curve represents an equilibrium state. Energetics requires that the state
descend on the curve. Consequently, energetics alone determines the final
state. Kinetics is restricted to the role of determining the time needed to
approach the equilibrium state.

For a system of two degrees of freedom, the free energy is a function
of two generalized coordinates. This function is a surface in a three-
dimensional space, with the free energy as the vertical axis, and the two
generalized coordinates as horizontal axes. A point on the surface repre-
sents a nonequilibrium state in general; the bottom of a valley represents
an equilibrium state. Energetics requires that an evolution path be a
descending curve on the surface. There are, however, countless descending
curves on a surface from any point other than a bottom of a valley.
Consequently, when a system has two or more degrees of freedom,
energetics by itself does not determine the evolution path. Kinetics plays a
more significant role than just timekeeping.

In the analysis above of the Rayleigh instability, the system is modeled
with only one degree of freedom, the amplitude of the perturbation, &. It
gives the sensible predictions when the perturbation amplitude is small,
but cannot predict the spacing of the final spheres. In fact, the system has
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infinitely many final equilibrium configurations, and simply cannot be
modeled with one degree of freedom.

We next illustrate these general points in some detail with a row of
grains (Sun et al., 1996). Similar problems arise in an electrical intercon-
nect (Srolovitz and Thompson, 1986), powder sintering (Cannon and Carter,
1989), and a fiber constrained on a substrate (Miller and Lange, 1989).
Figure 17(a) illustrates a fiber of bamboo-like grain structure. The fiber
consists of a row of identical grains, initially cylindrical in shape and
connected at their ends, each grain being of length L, and diameter D, .
The grains change shape by mass diffusion on the surfaces and grain
boundaries, under the action of surface and grain-boundary tensions, 7,
and v, . The fiber is unconstrained in the longitudinal direction. The grains
are assumed to remain identical to one another (Figure 17(b)). They will
evolve to either one of two equilibrium configurations: the isolated spheres
(Figure 17(c)), or connected disks of truncated spheres (Figure 17(d)).

n—

a) D,

L ¥
e
SN

OO0 1]

c) Isolated Spheres d) Truncated Spheres

Fic. 17. (a) The initial cylinder-shaped grains. (b) Barrel-shaped grains approximate an
intermediate, nonequilibrium state. (¢) Grains pinch off and spheroidize, approaching an
equilibrium state, a row of isolated spheres. (d) The array contracts as atoms diffuse out from
the grain-boundaries and plate onto the free surfaces, approaching another equilibrium state,
a touching array of truncated spheres.
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The final equilibrium state is selected by an interplay between the free
energy and the kinetic process. For most materials, y, < 27,, and the
isolated spheres in Figure 17(c) have higher free energy than the truncated
spheres in Figure 17(d). For the fiber to groove along the triple junction,
pinch off, and spheroidize, atoms need only diffuse on the surfaces of the
grains. For the fiber to become truncated spheres, atoms must diffuse out
of the grain boundaries to allow the grain length to shrink. If the atomic
mobility on the grain boundary is much lower than that on the surface,
M, < M,, which is true for many materials, the grains do not have the
time to shorten significantly before they pinch off.

1. Energy Landscape

Approximate the shape of a nonequilibrium grain by a barrel formed by
rotating a circular arc about a prescribed axis. The geometry is fully
specified by three lengths: the arc radius R, the grain length L, and the
grain-boundary diameter D. The volume of each grain is constant during
evolution, which places a constraint. Consequently, within the approxima-
tion, the structure has only two degrees of freedom, which we chose to be
the grain length L, and the dihedral angle, W. Note that this approxima-
tion violates local equilibrium assumption at the triple junction.

Denote the area of the surface of a grain by A,, and the area of a grain
boundary by 4,. Consequently, the free energy per grain is

G=vA4,+ v,4,. (6.16)

When the triple junction reaches equilibrium, the dihedral angle, ¥,
reaches V¥, determined by (2.21). We will use ¥, to indicate the ratio
¥s/ - The free-energy function, G(L,¥), is computed in Miller and
Lange (1989) and Sun et al. (1996).

Figure 18 shows the energy landscape for L,/D, = 2.5 and ¥, = 150°.
The upper-left corner terminates when the grains pinch off. Indicated on
the landscape are the three special states: the initial cylinders, the isolated
spheres, and the truncated spheres. From the initial state of the cylinders,
the landscape descends steeply towards the minimum energy state of the
truncated spheres. The landscape, however, does contain descending paths
from the state of cylinders to the state of isolated spheres. Energy
landscape, by itself, does not determine the evolution path.
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F1G. 18. Energy landscape: the free energy is a function of the generalized coordinates,
the grain length and (nonequilibrium) dihedral angle. Three special states are indicated: the
initial cylinders, the isolated spheres, and the truncated spheres.

2. Evolution Path

Denote the mobility on the grain boundary by M, , and the mobility on
the surface by M,. The weak statement of the problem is

J A
. — = —6G. 6.17
/ " slda, + [ 7 81,dA, = —8G (6.17)

The two integrals are over the surface and the grain boundary, respec-
tively. Mass conservation relates the fluxes to the generalized velocities L
and ¥. The Galerkin procedure leads to two ordinary differential equa-
tions that evolve the generalized coordinates, L and ¥ (Sun et al., 1996).

The numerical solutions are plotted in Figure 19. The solid lines are the
energy contours. After the grains pinch off, they spheroidize with only one
degree of freedom, V¥, as represented by the dashed line at the upper-left
corner. The dotted lines are the evolution paths for various mobility ratios,
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Grain Length L/L,

0 30° 60° 90° 120° 150° 180°
Dihedral Angle ¥

FiG. 19. The solid lines are the energy contours. The dotted lines are the evolution
path when the grains are connected. The dashed line is the evolution path after the grains
pinch off.

M, /M. When the grain-boundary mobility is vanishingly small, M, /M, =
0, the grain length remains constant while the surface grooves; the grains
pinch off and spheroidize, approaching a row of isolated spheres. Increas-
ing the mobility ratio to M, /M, = 10~* allows the grains to contract to
the state of truncated spheres. Consequently, everything else being fixed, a
critical grain-boundary mobility exists, above which the grains contract to
the lowest energy state, the truncated spheres. The evolution path depends
on both energetics and kinetics.

Figure 20 draws a morphological diversity map. A point on the map
represents a pair of parameters, L,/D, and M,/M,. A boundary divides
the plane into two regions. A parameter pair in one region makes the
grains evolve to isolated spheres, and a parameter pair in the other region
makes the grains evolve to truncated spheres.

—

Motions of Microscopic Surfaces in Materials 255

Morphological Diversity

5 T — ——rrry
¥, = 150°
(=]
Q
3 '
s OO0
2
o 3} .
]
]
Q
n
<
£ 2F T
©
j o
o 888
]
= 1} -
£
0 2 NIRRT | M a2l i oA
10 10+ 10° 102

Mobility Ratio Mp/Ms

FiG. 20. A diversity map. The coordinates are the control parameters that do not change
when the structure evolves. A boundary separates the plane into two regions. A fiber with the
parameter group falling above the boundary evolves to isolated spheres. A fiber with the
parameter group falling below the boundary evolves to truncated spheres.

C. GROOVING AND PITTING

Figure 21(a), page 256, illustrates a triple junction formed by a grain
boundary and the free surface. The free surface is initially flat. When
heated, atoms diffuse on the surface, leaving an indent along the triple
junction, and two bumps over the grains. The size of the groove increases
with the time. The forces that cause grooving are the surface and grain-
boundary tensions. When the groove grows, the surface area increases
somewhat, but the grain-boundary area decreases, so that the total free
energy of the system reduces. Mullins (1957) analyzed this phenomenon,
assuming that the surface and grain-boundary tensions, y, and y,, are
isotropic, the grain boundary remains stationary, and no mass flows out
from, or into, the grain boundary.

The equation for surface motion (5.14) becomes

v, =BV?K; B=MQ%,. (6.18)
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(a)

(b)

FiG. 21. (a) A surface groove over a grain boundary. (b) A surface pit over a three-grain
junction.

Because the initial geometry has no length scale, the surface evolves with a
self-similar profile: all lengths in the subsequent geometry scale with the
time as (Bt)'/*. For example, the groove depth (i.e., the distance from the
groove root to the plane of the initial flat surface) scales as

d =k(Bn)'"". (6.19)
The dimensionless coefficient & depends on the ratio vy, /7y, only. Mullins
further simplified the problem by noting that the slope of the profile is
typically small and the equation can be linearized. Under this simplifica-
tion, kK must be linear in the slope of the surface at the triple junction,
m, defined by (3.13). Mullins’ analysis gave k = 0.78m. The spacing
between the peaks of the two bumps, w, has the same time scaling, but
is independent of m under the small slope simplification. Mullins’s
analysis gave

w = 4.6(Bt)"*. (6.20)
The groove width and depth may be measured experimentally. One can
therefore deduce the surface tension and the surface diffusivity if y, has
been determined by some other experiments. See Tsoga and Nikolopoulos
(1994) for an experimental demonstration.
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Figure 21(b) illustrates an intersection between the free surface and a
three-grain junction. The surface grooves along the grain boundaries, and
pits at the point of emergence of the three-grain junction. The surface
profile is still self-similar, all lengths following the same time scaling as
above. The pit depth obeys (6.19), the coefficient k depending on the
ratios of various surface tensions involved. Genin et al. (1992) analyzed the
problem, and found that k is greater than 0.78m, but within a factor of 3
for all the configurations considered by them.

Grain-boundary grooving and pitting may break a polycrysalline thin
film on a substrate. If the grain size is much larger than the film thickness,
(6.19) estimates the time needed for a three-grain junction to pit through
the film thickness. However, if the grain size is comparable to the film
thickness, mass transported from the grooves piles up on the grains,
stopping the grooving process. Srolovitz and Safran (1986) and Miller et al.
(1990) demonstrated that a critical ratio of grain size and film thickness
exists, below which the grains reach an equilibrium configuration without
breaking the film. Such an equilibrium state, however, may be unstable
against grain growth. The coupled process of grain growth and surface
grooving-pitting has not been analyzed.

D. GRAIN-BOUNDARY MIGRATION IN THIN FILM; EFFECT OF
SURFACE DIFFUSION

Mullins (1958) investigated the effect of surface diffusion on the migra-
tion of a grain boundary. Figure 22 illustrates a triple junction of a grain
boundary and two free surfaces. Two rate processes are involved: migra-
tion of the grain boundary and diffusion on the free surfaces. Dragged by
the grain boundary, the groove moves to the right. Mullins solved the
problem of the groove moving in a steady state, with constant velocity v

M

S

FIG. 22. A grain boundary moving in a thin film. Surface diffusion causes grooving at the
triple junction.
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and depth d. The significant features of his solution may be summarized
as follows.

The steady velocity v and the material constant B in (6.18) define
a length:

1=(B/w)”. (6.21)

This length sets the scale of the steady-state profile of the free surfaces. In
particular, the groove depth, d, is linear in I. The shape of the translating
groove depends on the ratio of the mobilities of the two surfaces, and the
ratios of various surface tensions. Mullins assumed that the two surfaces
have the identical mobility and surface tension. Consequently, only the
ratio of the grain boundary and surface, y,/,, enters the problem. Under
the assumption that the surface slope is small, Mullins found that the
steady-state groove depth is

B 1/3
d=;—;(;) . (6.22)

Everything else being equal, the larger the velocity, the smaller the
groove depth.

Like surface evaporation, surface diffusion rotates the surfaces at the
triple junction. The rotation angle 6 in Figure 22 only depends on vy, /¥,.
Mullins’ solution gives

- (6.23)
67,
The rotation angle is independent of the steady velocity.
In his original analysis, Mullins (1958) did not specify the force that
drives the grain-boundary migration, leaving the steady velocity undeter-
mined. Following the works cited in Section IILE, we consider a grain
boundary migrating in a thin film, driven by the difference in the interface
tensions, y; and vy, (Figure 22). The slope ¢ is determined by the
equilibrium of the triple junction in the horizontal direction (3.25). For the
grain boundary to move to the right, it must concave toward the right,
¢ > 6, namely,

Y- Yo
—>_

. (6.24)
Yo 67
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The effect of surface diffusion on grain-boundary migration is similar to
surface evaporation discussed in Section IILE.
When ¢ > 6, from (3.20), the velocity of the grain boundary is given by

(¢ —-0)

U= Lb’)’bm. (625)

Simultaneously solving (6.22) and (6.25) gives v and d. The nonlinear
equations have a unique real-valued solution. The solution depends on
¢, 0, and the dimensionless ratio

QM,
thb ’

(6.26)

involving the surface diffusion mobility M,, the grain-boundary migration
mobility L,, the film thickness 4, and the atomic volume (). Everything
else being fixed, d/h increases with the parameter (6.26). Consequently, a
thin film is more likely to break than a thick film.

E. STEADY SURFACE MOTION

1. Surface Invariant in One Direction

The profile of such a surface is described by the curve in a cross section.
Assume, as a boundary condition or a symmetry condition, that the flux at
a point on the surface vanishes. Let the origin of the coordinate (x, y)
coincide with this point, Figure 23. Focus on a segment of the curve

J0)=0

Fi16. 23. Geometry of a steady-state surface profile.
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between the origin and the point at y. Mass conservation relates the flux
out of the segment, J(y), to the steady velocity v:

vy
J=—. 6.27
Q (6.27)

Assume isotropic surface tension y and diffusion mobility M. The curva-
ture K is positive for a convex surface. The flux relates to the curvature
gradient along the surface:

MyQ dK
- (6.28)
ds
A combination of the two equations above gives that
dK y
—_—= - 6.29
ds P 6.29)
The length ! is defined by (6.21). Recall geometric relations,
a6 K b in 6 & 0 (6.30)
2~ K., —sin6, - =coso. .

Equations (6.29) and (6.30) give the complete set of ordinary differential
equations. Note that only the last two equations are nonlinear, which may
be linearized when the slope is small, as Mullins (1958) did. The equation
set can be integrated with suitable boundary conditions. For a closed
curve, the size of the problem is set by giving the area enclosed by the
curve.

Chuang and Rice (1973) showed that a slit-like cavity may extend on a
grain boundary if mass diffuses rapidly into the boundary ahead of the tip.
Thouless (1993) and Klinger et al. (1995) studied slit formation on parallel
grain boundaries. The co-evolution of pores and grains during sintering
sets the microstructure of a final product. Spears and Evans (1982)
examined the steady motion of a pore on a three-grain junction, and its
relation with coarsening of pores and grains. The stability of the steady-
state solutions has not been studied in general, but the available transient
solutions show the validity of some steady-state solutions. Pharr and Nix
(1979) and Thouless (1993) demonstrated that, under certain conditions, a
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rounded void on a grain boundary stressed in tension evolves to the
steady-state slit solution of Chuang and Rice (1973).

2. Surface of Revolution

Now Figure 23 represents a surface of revolution around the x-axis.
Assume that the flux at the apex vanishes, J = 0 at y = 0. Mass conserva-
tion relates the flux J(y) to the steady velocity v:

-
20°

The flux relates to the curvature gradient still by (6.28). For the surface of
revolution, the sum of the principal curvatures is

J (6.31)

de  cos 0
K=-—+ . (6.32)
ds y
The set of ordinary equations are
dK y dae K cos® dy o dx 6. (633)
— =—-—=, —=-K+ , — = ,— = . (6.
ds 28 ds y oas MmO T

They may be solved under analogous conditions as above.

Hsueh et al. (1982) examined the steady motion of a pore attached on a
grain boundary, and the conditions under which the pore detaches from
the grain boundary.

VII. Diffusion on an Interface between Two Materials

An interface between two materials is a rapid diffusion path for impurity
atoms and atoms of the two materials. This section concerns with the
latter. Both materials are taken to be rigid. (Sofronis and McMeeking,
1994 considered the combined interface diffusion and matrix creep in
composite materials, which will not be considered here.) On an Al-Al, O,
interface, for example, one expects that aluminum diffuses much faster
than oxygen, the latter being tied by the stronger atomic bonds. The
situation is unclear on an Al-Al,Cu interface: either aluminum or copper
may be the dominant diffusion species on the interface. If aluminum
diffusion dominates, the situation is similar to the aluminum-alumina
interface. If copper diffusion dominates, in order for one copper atom to
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leave an interface element, one Al,Cu unit dissolves and donates two
aluminum atoms to the aluminum crystal. Similarly, for one copper atom
to add to an interface element, one Al,Cu unit forms and accepts two
aluminum atoms from the aluminum crystal. See Ma and Suo (1993) for a
discussion on such an interface. This section focuses on the situation
exemplified by the aluminum-alumina interface, where no mass exchanges
across the interface.

A. RIGID INCLUSION MOVING IN A MATRIX

Refer to the material that diffuses on the interface as matrix, and the
material that does not diffuse as inclusion. Subject to a force, atoms of the
matrix diffuse from one part of the interface to another. To accommodate
the space, the inclusion moves like a rigid body—translating and rotating
—relative to the matrix. The shape of the interface remains invariant. The
mobility of the atoms on the interface determines both the translation and
rotation velocities, which may change with time. This situation arises in
several important phenomena in materials. For example, when an inclu-
sion attaches to a grain boundary, the speed of the combined entity
depends on the mobilities of both the inclusion and the grain boundary.
Consequently, the inclusion may retard the grain-boundary migration.

As a demonstration, we will only consider inclusion translation. Let v be
the translation velocity of the inclusion relative to the matrix, J the flux of
the matrix atoms, () the volume per matrix atom, and n the unit vector
normal to the interface pointing to the matrix. Assume that neither the
inclusion nor the matrix deforms, so that the volume added to an interface
element must be accommodated by the inclusion motion:

n-v=QvV.J. 7.1

Similarly, let 8r be the virtual translation of the inclusion, and 681 the
virtual mass displacement. Mass conservation requires that

n-8r=QV- (5. (7.2

The driving force for the inclusion translation, f, is the free-energy
reduction associated with the inclusion translating unit distance, namely,

6G = —f- 6r. (7.3)

T —
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This force can be calculated once the free energy is known as a function of
the inclusion position. Equation (5.5) defines the diffusion driving force,
and (5.6) prescribes the kinetic law. The weak statement (5.20) still applies.

Analytical solution can be readily found for an inclusion having a shape
invariant in one direction subject to a force perpendicular to that direc-
tion, or for an axisymmetric inclusion subject to a force in the direction of
the symmetry axis.

1. Axisymmetric Inclusion

With reference to Figure 23, the interface is a surface of revolution. The
force f, defined by (7.3), is in the direction of the axis of revolution, the
x-axis; y is the radius of the surface of revolution. The inclusion translates
at velocity v in the x-direction. Mass conservation relates the flux J
to the velocity v, and the virtual mass displacement 8 to the virtual

translation &r:
y

y
- 2 = §r. (7.4)
J ZQU, 81 ) r

The weak statement (5.20) becomes

20 M
giving
4MO?
U= f. (7.5)
[y*dA

The integral extends over the area of the interface. For a spherical

inclusion of radius R, [y*dA = 8wR*/3, so that
IMQ?f

vy

The approximate solution given by Shewmon (1964) has the same form as
(7.6), but a different coefficient.

(7.6)

2. Two-Dimensional Problem

Figure 23 now represents an inclusion having a shape invariant along
the axis normal to the plane of the paper, subject to a force in the x-axis.
Energy is on a per thickness basis, so that f is the force on a per unit
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thickness of the inclusion. We will assume that the particle translates in
the x-axis; the method, however, is general. Let J, be the flux on the
interface at y = 0, and J the flux at a general point y on the interface.
Mass conservation requires that

y
J=J,+ =v, 8I=0I,+ %Sr. (7.7)

0
The weak statement (5.20) becomes
1 y y
f M(JO + ) U)(6]0 + ) Sr) ds = fér.

The integral extends over the cross-section curve of the interface. Because
the two virtual variations, 6r and 81, are independent, the equation splits
above to two equations

Qlofds + v fyds = 0. (7.8)

J, [ yds + v j yids = Q2Mf. (7.9)

They solve J, and v.
When a problem has a symmetry, and the origin of the y-axis is so
placed that [yds = 0, the solution is J, = 0 and

MQ2f

= f—yZ:i; (7.10)

v

For example, a cylindrical inclusion of radius R translates at velocity

MO

v= .
7R3

(7.11)

B. DIFFUSION-CONTROLLED INTERFACIAL SLIDING

Two-bonded materials under a shear stress may slide relative to each
other. If the interface is flat, they slide by a viscous shear process on the
interface. If the interface deviates from a perfect plane, the shear process
alone does not accommodate the sliding. The asperity on the interface may
be accommodated by plastic flow or fracture. Raj and Ashby (1971)
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proposed an alternative process, which operates at low stresses and high
temperatures, when the bulk of the materials is rigid. Figure 24 illustrates
two materials bonded by an interface with steps. Under the applied shear
stress, 7, the interface is under tension at locations like A, and compres-
sion at locations like B. The gradient of the normal stress causes atoms of
at least one material to diffuse on the interface, and thereby accommo-
dates sliding. In this picture, sliding consists of two rate processes: viscous
shear and interfacial diffusion. The two processes are in series; the slower
one limits the sliding rate. Raj and Ashby gave experimental evidence
indicating that it is often mass diffusion, rather than viscous shear, that
limits the sliding rate. Similar considerations suggest that inclusion parti-
cles on a grain boundary may retard grain-boundary sliding (Raj and
Ashby, 1972).

Following Raj and Ashby (1971), we consider an interface with periodic
steps (Figure 24). The ratio of the step height to the period, h/A, is
typically small and is exaggerated in the figure. Due to symmetry, the flux
vanishes at the middle of the step height, where the origin of the y-axis is
placed. We next apply (7.10) to one period of the bi-material. The force on
one period is

f=7A.

The integral over the interface within one period is

1 1
fyzds = AR+ (7.12)

F1G. 24. A bi-material interface with periodic steps. The rate of sliding is limited by
diffusion on the interface to accommodate the asperity.
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Consequently, the two materials slide at a relative velocity
AMQ°r
2 (1 2h\ "
+ —_
3A

This reproduces the approximate result of Raj and Ashby (1971) in the
limit /A — 0.

v = (7.13)

C. GRAIN-BOUNDARY MIGRATION IN THIN FILM; EFFECT
OF INCLUSION

Figure 25 illustrates a grain boundary migrating in a thin film of
thickness #, motivated by the difference in the film-substrate interface
tensions of the two grains, ¥ and y; . The grain boundary also drags a
semi-circular inclusion of radius R on the film surface. The surface
tensions of the two grains at the free surfaces, y,, are taken to be the
same. The inclusion retards the grain-boundary motion if the inclusion
itself has low mobility. We will only consider a two-dimensional problem
where the inclusion is a cylinder. The film-substrate interface is taken to
be immobile, so that the angle at the triple junction, ¢, is given by (3.25).

The grain-boundary migration can be modeled by the steady-state solu-
tion in Section II.D. The grain boundary moves at a velocity

_ LYb(d’ - 0)

"R (7.14)

Y t<- 2R~ Yo

h
l W ¥
7

T 77T T 7

FIG. 25. A grain boundary in a thin film, pinned by an inclusion.
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The grain-boundary tension exerts a force on the inclusion, f = vy, sin 6.
Equation (7.11) gives the velocity of the inclusion

2MQ? vy, sin 6

— (7.15)

v

The angle 6 falls between 0 and ¢, and is determined by equating the
velocities above. Consequently, the angle 6 is solved from

¢_01——C080 =m. (7.16)

h
The inclusion retards the grain-boundary migration substantially if
0 — ¢, or

sine( R ) wLR?

LR®

> 1. 7.17
MQ%h ( )

This condition involves the film thickness and particle radius, the migra-
tion mobility of the grain-boundary L, and the diffusion mobility of the
inclusion-film interface M.

VIII. Surface Diffusion Driven by Surface- and
Elastic-Energy Variation

A small crystal can sustain a high stress without fracture or plastic
deformation. At an elevated temperature, the elastic energy can motivate
mass diffusion. For example, when a film is deposited on a substrate with
similar crystal structure having a few percent difference in lattice constant,
the film strains to match the substrate lattice constant. The stress in the
film would exceed 1 GPa were all relaxation processes suppressed. When
the film is thick, the stress is relieved by dislocations or cracks. When the
film is thin and the temperature is high, the stress is relieved by mass
diffusion, breaking the film into islands. See Leonard et al. (1994) for a
demonstration with InAs on GaAs.

Surface diffusion driven by strain-energy variation is difficult to analyze.
The stress field has to be solved as a boundary-value problem for every
surface shape during evolution, which is analytically intractable for most
technically interesting problems. The high-order differential equation (5.14)
requires great care in the numerical analysis. In many situations, the stress
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is partially relieved by misfit dislocations; linear elasticity is inadequate.
Due to these difficulties, only a few idealized problems have been solved.

This section discusses two such problems to give an impression of this
class of phenomena. Each problem deals with an elastic body subject to a
constant load. The free energy of the crystal, G, has three contributions:
the surface energy U, the elastic energy Uy, and the applied load times
the displacement, i.e., G = Ug + U; — load X displacement. Linear elas-
ticity dictates that 2U; = load X displacement. Consequently, the free
energy of an elastic solid under constant load is

G = U - U,. (8.1)

A. INSTABILITY OF A FLAT SURFACE

First consider a large piece of crystal under no external stress. A surface
of the crystal is flat and has isotropic surface tension. If scratched, the
surface heals as the surface tension motivates mass to flow to restore the
minimum energy configuration, the flat surface. Mullins (1959) analyzed
the flattening process via several mass-transport mechanisms, including
surface diffusion.

Next, subject the crystal to a uniaxial stress parallel to the flat surface.
The crystal is taken to deform elastically. The flat surface is unstable: a
small-amplitude perturbation amplifies if its wavelength exceeds a critical
value. The phenomenon was independently analyzed by Asaro and Tiller
(1972), Grinfeld (1986), Srolovitz (1989), and Gao (1991). The perturbation
grows to a surface crack running into the bulk of the crystal, transverse to
the applied stress direction (Chiu and Gao, 1993; Yang and Srolovitz,
1993; Yakobson, 1993). Suo and Yu (1997) extended the analysis to an
clastic polycrystal surface. Gao (1994) and Freund (1995) surveyed the
related problems.

Spencer et al. (1991) and Freund and Jonsdottir (1993) analyzed the
similar instability in a film strained by a substrate. The undulation may
break the film into islands, if atoms of the substrate do not diffuse at the
temperature. Wong and Thouless (1995) studied the ratio of the island
height and radius as a function of the misfit strain and various surface
tensions. Seifert et al. (1996) demonstrated that the surface energy
anisotropy is important in island formation.
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1. Energetics .

What follows describes the essential findings of the initial surface
instability. To focus on main ideas, we treat the plane stress problem of a
semi-infinite elastic crystal subject to a uniform stress, o, parallel to
the free surface of the crystal. The surface tension of the crystal, v,
is isotropic.

Consider the energy variation when the flat surface is perturbed. The
perturbed surface has a larger area than the flat surface, so that U
increases with the perturbation. Under a constant load, a body with a
perturbed surface has a larger displacement at the loading point than a
body with the flat surface (i.e., the undulation makes a body more
compliant), so that Uy also increases with the perturbation. According to
(8.1), the surface tension favors the flat surface, but the stress favors the
perturbed surface: the two forces compete to determine whether the
perturbation diminishes or amplifies.

To be specific, perturb the flat surface by a wave of amplitude g and
period A:

2mx
y(x,t) =q(t)cosT. (8.2)

Here, y is the height of the perturbed free surface from the initial flat
surface, the x-axis coincides with the flat surface, and ¢ is the time. The
amplitude g is the generalized coordinate in this problem. Following the
previous authors, we will carry out a linear stability analysis, with g /A < 1.
The energies will be calculated to the leading order in g/, per period per
unit thickness, relative to the energies of the stressed crystal with the
flat surface.
The undulation increases the surface energy by

2
q°. (8.3)

This is readily obtained by calculating the length of the curve (8.2).
Because a change in the sign of g leaves the curve length unchanged, Uy is
proportional to g to the leading order in gq.

For a similar reason, the elastic energy variation Uy is proportional to
g’ to the leading order in g. In addition, linear elasticity dictates that Uy
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be proportional to o2/Y, where Y is Young’s modulus. A dimensional
analysis shows that

2
U: =B g q°, (8.4)
Y

where B is a dimensionless number of order unity. An elasticity problem
of the wavy surface can be solved analytically to the leading order in q/A,
giving B = 7; see the papers cited previously.

A combination of (8.3) and (8.4) gives the free-energy difference
between the solid with a wavy surface and the solid with a flat surface:

mly mo

2
G = (— - )qz. (8.5)

A Y

The free energy decreases when the quantity in the bracket is negative.
Consequently, the perturbation amplifies when the wavelength A exceeds a
critical value, given by

A, =7wYy/0? (8.6)

Because the elastic energy is quadratic in the applied stress o, the flat
surface undulates under both tension and compression.

2. Kinetics

The profile (8.2) with g/A < 1 has velocity normal to the surface
Up =4 cos(2mx/A). Mass conservation relates the atomic flux to the nor-
mal velocity by 9J/ds = =,/€). For a small-amplitude perturbation, the
curve length s can be replaced by x. An integration gives

J A 2mx]
= 2o i — |4 8.7)

A similar relation connects the virtual mass displacement 8/ and virtual
amplitude 8q. The weak statement (5.20) leads to

) (8.8)

LS
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with the characteristic time being

A A !
S — ) 8.9
4 327r4M(12y()1£ ) 8.9)

The solution to (8.8) is g(r) = g(0)exp(t/7), where q(0) is the wave
amplitude at 1 = 0. When A < A, 7 < 0 and the perturbation diminishes
with the time. When A > A_, 7> 0 and the perturbation grows with the
time; 7 minimizes at the wavelength A, = 4A./3. If perturbations of all
wavelengths have an identical initial amplitude, the perturbation of wave-
length A, grows most rapidly at ¢t = 0.

The solution above is derived on the basis of the weak statement, and
agrees with the exact solution of the previous authors obtained from the
differential equations. This agreement is due to the choice of the perturba-
tion (8.2), which is the form of the exact solution. If the form of the
perturbation is inexact, the weak statement would yield an approximate
solution.

One may also use the same procedure to estimate the effect of surface-
tension anisotropy. For example, assume that the initial flat surface has
surface tension y,, which is higher than the surface tensions of neighbor-
ing crystal orientations. Take the surface anisotropy to be of form (6.12),
and the same procedure as above gives the critical wavelength

(1-2a)
A = mYy———. (8.10)

As expected, such anisotropy decreases the critical wavelength.

B. PORE-SHAPE CHANGE

1. Qualitative Considerations

Consider the high temperature rupture of sapphire fibers. Pores (diame-
ter about 1 um) are left inside the fibers (diameter about 150 nm) after
fabrication. Newcomb and Tressler (1993) demonstrated that, when a
sapphire fiber is pulled at an elevated temperature, a crack emerges from
an internal pore, grows slowly at first and, upon attaining a critical size,
causes the fiber to fracture.

When a crystal is under uniaxial tension at a high temperature, a pore in
the crystal may change volume and shape for several reasons. Elastic
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distortion changes the pore volume and shape by a small amount; large
changes require creep or mass transport. If the crystal creeps rapidly and
surface diffusion is slow, the pore increases volume and becomes needle-
shaped in the pulling direction (e.g., Budiansky et al., 1982; Needleman
and Rice, 1980).

This subsection is concerned with the situation where surface diffusion
is so rapid that the crystal creeps negligibly during the time of interest.
On the basis of several theoretical studies (Stevens and Dutton, 1971;
McCartney, 1976; Gao, 1992, 1995; Suo and Wang, 1994; Sun et al., 1994;
Wang and Suo, 1997), we suggest the following sequence of events in the
Newcomb and Tressler experiments. When the fiber is under no stress,
the pore has a rounded shape maintained by the surface tension. When
the fiber is under a tensile stress, the pore changes shape via surface
diffusion. Two outcomes are expected. If the applied stress is small, the
pore reaches an equilibrium shape close to an ellipsoid, as a compromise
between the stress and the surface tension (Figure 26(a)). If the applied
stress is large, the pore keeps changing shape and develops a sharp crack
tip which grows in the direction transverse to the applied tensile stress
(Figure 26(b)).

On forming the sharp tip, further crack elongation is no longer limited
by self-diffusing on the pore surface. Atomic bonds break at the crack tip
by the intense stress, possibly assisted by the environmental species inside

r° t°
' '

FIG. 26. a) A pore under a small stress reaches an equilibrium configuration, which is
approximately an ellipse. b) A pore under a large stress develops sharp noses, followed by
subcritical cracking.

——?———
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the pore. The rate of crack growth may be limited by transport of the
environmental species to, or reaction at, the crack tip (Lawn, 1993). Once
the crack grows large enough, fast fracture breaks the entire crystal. The
fiber spends its lifetime mainly in two stages: self-diffusion to grow the
sharp tip, and the subcritical cracking after the sharp tip has formed.
Which stage takes the longer time depends on the material, chemical
environment, and temperature.

2. Energetics of Crack Emergence

Compare two crystals, one with a spherical pore, and the other a
nonspherical pore. Both crystals are subject to the same tensile load
remote from the pores. The pores have the same volume. Because the
sphere has the minimal surface area among pores of the same volume, the
nonspherical pore increases the surface energy Us . Because a body with a
flattening pore transverse to the loading axis is more compliant than a
body with a spherical pore, the nonspherical pore increases the elastic
energy Ug. Consequently, according to (8.1), the two forces compete to
determine the pore shape: the surface tension favors a spherical pore, and
the applied stress favors a crack.

Let a, be the initial pore radius, o the stress, y the surface tension, and
Y Young’s modulus. Express the relative importance of the elastic energy
and the surface-energy variations with a dimensionless number

(8.11)

When A is small, the surface energy variation dominates, and the pore
reaches an equilibrium state of approximately ellipsoidal shape. When A is
large, the elastic-energy variation dominates, and a crack emerges from
the pore.

The following reviews the calculation of Suo and Wang (1994). The
surface tension is taken to be isotropic. Consider a plane-stress problem of
a cylindrical pore in an infinite crystal, subject to stresses o, and o, in
the x- and y-directions. Initially, the pore is a circle of radius ay. Under
the action of the surface tension and stresses, atoms diffuse on the pore
surface, causing the pore to evolve to a sequence of noncircular shapes.

We will first approximate the evolving shapes by a family of ellipses.
Mass conservation requires that the area of the ellipses be the same as the
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area of the initial circle, wa2. Consequently, the system has only one
degree of freedom, the ratio of the two semi-axes of the ellipses, written as

a1+ m)

T (8.12)

The circle corresponds to m = 0, the slit in the x-direction to m — 1, and
the slit in the y-direction is m —» —1.

Energies are calculated on the unit thickness basis, and the initial state
is taken to be the ground state. The surface energy equals the surface
tension times the perimeter of the ellipse. Relative to the circular pore, an
elliptic pore has surface energy

a,y ”
Uy = 9 j(;z (A +m? - 2mcos20)’* do — 2mwayy. (8.13)

Vi—-m?
The integral is evaluated numerically.
The stress field can be found in elasticity textbooks. The elastic-energy
difference between a body with an elliptic pore and a body with a circular
pore is computed from (4.14), giving

U = (8.14)

2
m
27'ra0( m 5 2)
1

Yy \1=m”? 1+m?

The total free energy G is given by (8.1).

Figure 27(a) displays the free energy at several constant levels of A for a
pore in a body under o, = o,. Here, G is the free energy of the crystal
with an elliptic pore, and the G, is the free energy of the crystal with a
circular pore. Each minimum and maximum represents a stable and
unstable equilibrium state, respectively. Three types of behaviors emerge
depending on the value of A, i.e., the relative importance of elastic and
surface energy, as follows.

(1) When A = 0, the surface tension dominates; G reaches a minimum
at m = 0, and maxima at m = + 1. The circular void is stable and the two
slits are unstable: any ellipse will relax to the circle.

(2) When A > 2, the stress dominates; G reaches the maximum at
m = 0, and minima at m = +1. The circle is unstable but the slits are
stable: any elliptic void will collapse to the slits.

(3) For an intermediate level, 0 < A < 2, G reaches a local minimum at
m = 0, two maxima at some +m,_., and two minima at m = +1. The
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FIG. 27. Biaxial stress state o, = o, = . a) The free energy as a function of the void
sl}ape m at several levels of A. b) The bifurcation diagram is a combination of a subcritical
pitchfork and two Griffith cracks.

maxima act as energy barriers: an ellipse of |m| < m, will relax to the
circle, but an ellipse of [m| > m,_ will collapse to the slits.

The information above is projected onto the (A, m) plane, Figure 27(b).
The heavy solid and dotted lines correspond to the stable and unstable
equilibrium states, respectively. The two slits are stable for any A > 0, but
unstable for A = 0. The circle m = 0 is metastable when A < 3, but
unstable when A > 3. The dotted curve is the unstable equilibrium states,
referred to as m, in the preceding paragraph. These lines divide the
(A, m) plane into four regions. A point in each region corresponds to an
ellipse under a constant level of A, evolving toward a stable equilibrium
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state, either the circle or the slits. The evolution direction in each region is
indicated by an arrow. An ellipse below the dotted curve relaxes to the
circle, and an ellipse above the dotted curve collapses to a slit. An initially
circular void will collapse if A exceeds the critical value A, = 2.

Figure 28(a) and 28(b) are for o, /0, = 0.8, representative of any stress
ratios in the interval 0 < o, /0, < 1. Several asymmetries are noted. For
small A, the local minimum no longer occurs at m = 0, nor do the two
maxima at the same value of |m|. At a critical value, still denoted as A,
the minimum and the maximum on the right-hand side annihilate, but the
maximum on the left-hand side persists. In Figure 28(b), the values of m
minimizing G are the heavy-solid lines, and the values of m maximizing G
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Fic. 28. Biased biaxial stress state o,/d, = 0.8. a) The free energy as a function of the
void shape m at several levels of A. b) Stability conditions projected on the (m, A) plane.
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are the dotted lines. As expected, under the biased stress, the equilibrium
shape is noncircular even for a small value of A. The heavy-solid curve
ends at A, and is continued by the dotted curve.

Figure 29 gives the calculation A, as a function of the stress ratio. The
critical number does not vary significantly for the entire range of the stress
ratio. Sun et al. (1994) gave the corresponding results for a three-
dimensional pore.

3. Kinetics

Next, examine the kinetics of the pore-shape change using the weak
statement. Normalize all the geometric lengths by the radius of the initial
circular pore, a,. From the weak statement we find that the problem has a
characteristic time scale

4
a9

= ——Mﬂzy, (8.15)

£y

which is used to normalize the time. Figure 30 plots the semi-axis of the
ellipse, a, as a function of the time, for several levels of the loading
parameter A. The body is remotely under stress state o, = o,. The initial
value is arbitrarily assigned to be a/a, = 1.01 at ¢ = 0. The pore spends
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F1G. 29. The critical number A, as a function of the stress ratio.



278 Z. Suo

0 0.5 1 15 2 2.5

Normalized Time, tQ2MY/ay*

FiG. 30. The time for one ellipse to evolve to another.

most of its time deviating from the circle. After it became somewhat
elliptic, the shape change is rapid.

C. NOSING, CUSPING, AND SUBCRITICAL CRACKING

Chiu and Gao (1993) and Yang and Srolovitz (1993) went beyond the
linear stability analysis of Section VIII.A, and studied large deviation from
the flat surface. They found that surface cracks emerge and grow into the
bulk of the crystal. In Section VIII.B, we have approximated the evolving
pore as ellipses. The pore shape, however, may significantly deviate from
an ellipse during evolution. Wang and Suo (1997) allowed more degrees of
freedom for the pore shape, determined the elastic field around the pore
with a conformal mapping, and traced the evolution of the pore shape.

We next summarize the findings of these studies in the context of the
shape change of a pore. The critical loading level, A, is still given
approximately by the curve in Figure 29. When the loading level is below
A, the circular pore evolves to a rounded shape, approximately elliptical
if oy # 0.

When the loading level exceeds A, the circular pore evolves with nearly
elliptical shapes in the beginning, then develops noses, and sharpens to
become cusps, as schematically illustrated in Figure 28(b). The noses
shorten diffusion length and further concentrate stress: this is a self-
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amplifying process. The time needed from a circular shape to develop
cusps takes the form ’

tCuSp = tog(A). (8-20)

When A just exceeds A, Icusp 18 ON the same order of the characteristic
time ¢,. When A > A, feusp 18 ONly a small fraction of the characteristic
time 1.

When the curvature at the nose tips increases and the noses become
cusps, the stress becomes singular at the cusp tip. The stress field around a
cusp tip has the same structure as that around a crack tip. The chemical
potential at the cusp tip is ill-defined, because the cusp tip is no longer in
local equilibrium. The situation is analogous to a triple junction with very
low surface tension compared to the grain-boundary energy, Section ILE.
Physically, another kinetic process takes over to limit the crack-extension
velocity. If dislocations are unavailable or immobile, atomic bonds may
cleave on the plane directly ahead of the cusp. The rate of crack extension
may be limited by the transport of the environmental species or reaction at
the crack tip (Lawn, 1993).

A common phenomenological description gives the crack velocity a
depending on the driving force at the cusp, f, such as

a=Cf", (8.21)

where C is a rate coefficient, and typically n > 1; both parameters are
used to fit the data of subcritical cracking experiments. The driving force
here is defined as the free-energy reduction associated with the crack-
advancing unit distance, namely

8G = —féa. (8.22)

The driving force is related to Irwin’s elastic-energy rate, &, and surface
tension vy as

f=%—2y. (8.23)

IX. Electromigration on Surface

Interconnects in integrated circuits are made of aluminum alloys. They
have small cross sections (less than 1 wm wide and about 0.5 pm thick),
carry electric current up to 10'° A /m?, and operate near half of aluminum’s
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melting temperature (933° K). The flowing electrons exert a forcg on
aluminum atoms (i.e., the electron wind force), motivating aluminum
atoms to diffuse. The phenomenon—mass diffusion directed by electric
current, known as electromigration—causes reliability problems in iqte-
grated circuits; see Thompson and Lloyd (1993) for a survey. This section
reviews phenomena related to electromigration on surfaces.

A. SURFACE DIFFUSION DRIVEN BY THE ELECTRON WIND

1. Electron Wind Force

To outline essential behaviors, we examine a plane problem of a
cylindrical pore in a conductor, Figure 31. Assume that atomic diffu§i0n on
the pore surface is the only mass-transport process. The electric field
vector E; is the gradient of the potential ¢:

E - -6, (9.1)

Electric charge conservation requires that the electric current density
vector, j;, be divergence-free:

jii=0. (9.2)

The electric field relates to the current density by Ohm’s law

E; = pj;, 9.3)

where p is the resistivity. Aluminum crystal has a cubic symmetry, so that
the resistivity is the same in all directions.

Fi1G. 31. A pore in an interconnect subjected to an electric field.
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An aluminum interconnect is typically subject to an electric field below
1000 V /m. This electric field is amplified at the pore. For a pore without
sharp edges, the amplification factor is about 2. Consequently, the electric
field inside the pore is much lower than the electrical breakdown field of
vacuum or dry air (around 1 MV /m). The pore can be modeled as an
insulator, namely, j;n, = 0 at the pore surface.

The component of the electric field tangential to the pore surface is
E, = —d¢/3s, where s is the curve length along the pore surface. The
electron wind exerts a force on atoms on the pore surface. The force per
atoms is proportional to the electric field E,:

FE = - Z*eE,, (9.4)

where Z*(> 0) is the effective valence, and e(> 0) the magnitude of the
electron charge. The negative sign means that the force is in the direc-
tion of the electron flow. The effective valence may depend on crystal
orientation.

2. Weak Statements

Let G be the free energy of the system, consisting of surface energy and
electrostatic energy. They both vary when the pore changes shape. The
relative magnitude of the two energies is described by a dimensionless
number ¢E’R,/y, where R, is the length representative of the pore size,
v the surface tension, and £ the permittivity of the medium inside the
pore. For typical values, this number is much smaller than unity. Conse-
quently, we will ignore the electrostatic energy, and take the free energy to
be the surface energy:

G = [ yds. 9.5)

The integral extends over the pore surface. The surface tension y may
depend on crystal orientation.

As before, we define the driving force for mass diffusion using virtual
motion. Let 8/ be the mass displacement (i.e., the number of atoms across
unit length on the surface). Associated with this virtual motion, the free
energy changes by 8G, and the electron wind force does work [ Fg 8lds.
Define the diffusion driving force, F, by

[ Folds = -5G + [ Fpo1ds. 9.6)
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In other words, F is the reduction in the free energy plus the work done by
the electron wind, associated with one atom moving unit distance on the
surface. Evidently, (9.6) is an extension of (5.5).

Mass conservation takes the same form as in Section V, but a different
sign convention is adopted here: the normal vector on the pore surface n
now points to the solid. Mass conservation relates the virtual migration of
the surface &r, to the virtual mass displacement &1:

Qo(8I)
T e

9.7

Here () is the volume per atom. The surface velocity, v,, relates to the
atomic flux, J, by a similar relation:

0aoJ
U _—

. (9.8)
" as

The linear kinetic law connects the flux with the total diffusion driving
force:

J = MF. 9.9

Inserting (9.9) into (9.6), we obtain the weak statement of the problem:

J
[ 8lds = —5G + [ Froids. (9.10)
M

The actual flux J satisfies (9.10) for arbitrary virtual motion of the surface.
Of all virtual flux J, the actual flux minimizes the functional

JZ

— ds. (9.11)
M ds

H=G—[FEfds+f
3. Equations for Isotropic Conductor

Next, consider a conductor having isotropic surface tension and effective
charge. The total driving force for atomic diffusion on the pore surface is

QyoK
s

9.12)

F = —Z%FE, +

The first term is the electron wind force, and the second the capillary
force. The curvature K is positive for a rounded pore.
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A combination of equations (9.8), (9.9), and (9.12) gives

ax 92
n-— = MF(Z*ed) + QyK).
s

(9.13)
The left-hand side is the velocity normal to the pore surface. This equation
governs the motion of the pore surface.

B. PORE DRIFTING IN THE ELECTRON WIND

Small pores often appear in aluminum interconnects to relieve stresses
caused by thermal-expansion mismatch or electromigration. The pores may
move in the electron wind (Shingubara and Nakasaki, 1991; Besser et al.,
l 1992; Arzt et al., 1994; Marieb et al., 1995). Since electrons flow in the
direction opposite to the electric field direction, atoms diffuse on the pore
surface as indicated in Figure 31. Consequently, the pore migrates in the
direction of the applied electric field.

Ho (1970) showed that, in an infinite isotropic conductor under a remote
electric field, a circular pore can migrate without changing its shape. His
solution is summarized as follows. Figure 31 illustrates a circular pore,
radius R, in an infinite conductor subject to a remote electric field E.
The electric field is nonuniform in the conductor, but is uniform inside the
pore and equals 2 E. Because the electric potential is continuous across the
pore surface, E, is also continuous across the surface. Consequently,
the electric field component tangential to the pore surface is

E = — 2By (9.14)
, - .
The electron wind force is
2eZ*Ey (9.15)
F. = ‘0 .

The isotropic surface tension does not cause diffusion on the surface of a
circular pore, so that (9.15) is also the total diffusion-driving force.

On the pore surface in Figure 31, A is a symmetry point where the flux
vanishes, and B is a point at height y. Let the circular pore translate at a
uniform velocity v in the x-direction. In unit time, atoms of volume yu
(per interconnect thickness) are removed from the segment AB, and flow
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out of the segment at point B. Mass conservation requires that the flux at
point B be

yu

J == 9.16

Q ( )

Connecting (9.15) and (9.16) with the kinetic law J = MF, one obtains

the velocity of the pore
5 QMZ*eE

R, 9.17)

v =

The pore drifts in the direction of the applied electric field, at a velocity
proportional to the applied electric field, and inversely proportional to the
pore radius.

For a spherical pore in an infinite conductor subject to a remote electric
field E, the electric field in the pore is uniform and equals 3E /2. The
velocity of the pore takes the same form as (9.17), with the coefficient 2
replaced with 3. Ho (1970) also studied drifting of a rigid inclusion. Ma and
Suo (1993) showed how an Al,Cu particle drifts in an aluminum matrix, as
both copper and aluminum atoms diffuse on the particle-matrix interface.
Suo (1994) studied the migration of edge-dislocation loops when atoms
diffuse along the dislocation cores in the electron wind, and proposed the
process as a mass transport mechanism in aluminum interconnects when
other mechanisms are slow or absent.

The phenomena of defect migration provide means to determine atomic
mobility experimentally. For example, by measuring the velocity and radius
of a pore migrating in aluminum under a given electric field, one deter-
mines the parameter Z*M from (9.17). An aluminum interconnect is
usually covered by a thin film of aluminum oxide. The oxide film usually
covers a pore near the surface, which should insulate the pore surface
from contamination.

C. PORE BREAKING AWAY FROM TRAP

Grain boundaries and triple junctions may trap pores. Figure 32 shows a
pore attached on a grain boundary. In the absence of the electric field, the
pore eliminates part of the grain-boundary area, and therefore is in a
low-energy state. Subject to an electric field, the pore moves by surface
diffusion, and may break away from the grain boundary. Li et al. (1992)
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-— grain boundary

F1G. 32. A pore trapped by the grain boundary and driven by the electron wind.

and Wang et al. (1996) estimated the electric field needed for the pore to
break away from a grain boundary.

Denote f; as the force acting on the pore by the trap. For example,
when the pore tries to break away from a grain boundary of tension y,,
the grain boundary exerts a force (per interconnect thickness) on the pore,
fr =2y,, in the direction opposing the breakaway. In equilibrium this
force balances the electron wind force, and surface diffusion stops. Let the
pore undergo a virtual translation in the x-direction by a displacement 8a.
Mass conservation requires that 81 = yda /. In equilibrium, the total
virtual work vanishes:

fFESIds — frda = 0. (9.18)

Approximating the pore by a circle in integration, we obtain that

Z*ER? 1
Tf~ = E (9.19)
T

With material properties fixed, there exists a critical value of ER}, above
which the pore breaks away from the grain boundary. The numerical value
on the right-hand side of (9.19) will change if the pore surface is allowed to
change shape in the electron wind. The problem has not been solved
exactly.

Pore attachment and breaking away are evident in many experimental
studies (e.g., Besser et al., 1992; Kraft et al., 1993; Marieb et al., 1995).
Careful observations would lead to an estimate of the effective valence Z *.
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D. TRANSGRANULAR SLITS

Experimental evidence accumulated in the last few years has shown that
an aluminum interconnect with a bamboo-like grain structure often fails
by a transgranular slit. Micrographs of such slits were first published by
Sanchez et al. (1992) and Rose (1992). The slits are about 100 nm thick,
and nearly perpendicular to the current direction. The faces of a slit
and its running direction favor special crystalline orientations. Joo and
Thompson (1993) observed slits in single crystal aluminum interconnects.

It was, however, uncertain how the slits form by looking at the micro-
graphs taken after the aluminum interconnects had failed. In a sequence
of micrographs taken in interrupted electromigration tests, Kraft et al.
(1993) and Arzt et al. (1994) discovered that pores not only drift, but also
change shape. A rounded pore forms somewhere in the aluminum inter-
connect, travels for some distance, enlarges, and collapses to a slit. These
authors also suggested a mechanism by which a pore changes shape.
Figure 33 illustrates two asymmetric pore shapes. The shape in Fig-
ure 33(a) is critical because the electromigration flux from b to ¢ is larger
than that from a to b, so that mass depletes from b, and the pore
elongates in the direction normal to the interconnect. By contrast, the
shape in Figure 33(b) is uncritical because the electromigration flux from ¢
to b is larger than that from b to a, so that mass accumulates at b, and
the pore elongates in the direction along the interconnect.

Two forces compete to determine the pore shape: the electron wind
favors a slit, but the surface tension favors a rounded pore. On examining
the expression for the driving force (9.11), Suo et al. (1994) pointed-out

E E
————» —_—
b b
(o] a a c
(a) critical (b) uncritical

FiG. 33. a) A pore with the critical asymmetric shape. b) A pore with the uncritical
asymmetric shape.
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that the relative importance of the electron-wind force and the capillary
force is measured by a dimensionless number

Z*eER}
X = T’y 9.20)
where R, is the radius of the rounded pore, and E the applied electric
field. When y is small, the surface energy dominates, and the pore
remains rounded. When y is large, the electron wind dominates, and the
pore collapses to a slit. Note that the number has the same form as that
for a pore to break away from a trap (9.19). Suo e al. (1994) also estimated
the velocity and width of a well-formed slit.

Yang et al. (1994) and Maroudus (1995) attempted to estimate the
critical number for the shape instability, x.. To circumvent the difficulty of
solving the electric field around the pore, Yang et al. considered a model
problem where the medium inside the pore is conducting and has the same
resistivity as that of aluminum, and showed that such a pore becomes
unstable above y, = 10.65.

Marder (1994) carried out a rigorous linear-stability analysis. He con-
firmed the result above of the conducting pore. However, for the more
realistic model, i.e., a circular insulating pore in an infinite conductor, he
found that the pore is stable against infinitesimal shape perturbation for
arbitrarily high y. Mahadevan and Bradley (1996) independently carried
out the same analysis.

Linear stability analysis has its limitation. A pore that is stable against
infinitesimal perturbation need not be stable against finite perturbation. In
practice, the initial pore is never a perfect circle; deviation may result from
surface-tension anisotropy, finite-interconnect width, thermal stress, etc.
To determine the pore stability under practical conditions, one must study
finite initial imperfection and large shape change.

Kraft and Arzt (1995) and Bower and Freund (1995) studied numerically
the stability of an insulating pore in an interconnect of a finite width. They
determined the electric field in the conductor by using finite-element
methods, and updated the pore shape according to the electron wind and
capillary forces. A rounded pore is unstable above a critical level, yx,,
whose value depends on the initial pore radius to the linewidth ratio,
R,/w. Marder’s linear-stability analysis shows that X. > ®as Ry/w — 0.
The complete x.(R,/w) function is unavailable at this time.
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Wang et al. (1996) considered an unsulating pore in an infinite conduc-
tor, and introduced finite imperfection to the initial pore shape. They used
a conformal mapping to determine the electric field, and the weak state-
ment to update the pore shape. They showed that the pore becomes
unstable above x,, the magnitude of which depends on the type and
magnitude of the initial imperfection. For example, the initial pore is taken
to be an ellipse with the two semi-axis

(Vl + &2 —s)RO,( 1+ & +8)R0.

The form is chosen so that the area of the ellipse is wR{. The imperfec-
tion & takes finite values. As before, we use the characteristic time

Ry (9.21)
ty = —5— .
' 02My

to normalize the time. Figure 34 shows the snapshots at time interval
0.06¢, of a pore with initial imperfection & = 0.1. When x is small, the
pore migrates and changes its shape, but finally reaches a steady state.
When x is large, the pore collapses to a slit. Figure 35 plots x,. as a
function of the imperfection &. The critical value drops sharply when
moderate initial imperfection is introduced, and decreases somewhat
thereafter.
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F1G. 34. Each row is a sequence of snapshots of a pore migrating in an interconnect, in the
direction of the applied electric field, from the left to the right. The void is a perfect insulator.
The initial perturbation is & = 0.1.
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FIG. 35. The critical electric field as a function of the magnitude of the initial pore shape
imperfection e.
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