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ABSTRACT

Microelectronic circuits often fail because cracks and voids cause open circuits in their interconnects. Many
of the mechanisms of failure are believed to be associated with diffusion of material along the surfaces,
interfaces or grain boundaries in the line; material may also flow through the lattice of the crystal. The
diffusion is driven by variations in elastic strain energy and stress in the solid, and by the flow of electric
current. To predict the conditions necessary for failure to occur in an interconnect, one must account for
the influence of both deformation and electric current flow through the interior of the solid, and also for
the effects of mass flow. To this end, we describe a two dimensional finite element method for computing
the motion and evolution of voids by surface diffusion in an elastic, electrically conducting solid. Various
case studies are presented to demonstrate the accuracy and capabilities of the method, including the
evolution of a void towards a circular shape due to diffusion driven by surface energy, the migration and
evolution of a void in a conducting strip due to electromigration induced surface diffusion, and the
evolution of a void in an elastic solid due to strain energy driven surface diffusion. © 1997 Elsevier Science
Ltd.
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1. INTRODUCTION

Microelectronic circuits contain thin lines of aluminium alloy, which make electrical
contact between neighboring devices on the chip. A typical interconnect line has a
rectangular cross-section, with dimensions of the order 2 x 0.5 ym, as shown in Fig. 1.
It would be desirable to reduce these dimensions still further, but efforts to do so
have been impeded by frequent mechanical failure in the lines. Interconnects almost
always contain defects such as voids and cracks, and if a defect is large enough to
sever the line, it causes an open circuit. This form of failure has become significantly
more common as the dimensions of interconnect lines have been reduced, so there is
great interest in identifying the mechanisms responsible for nucleating and pro-
pagating voids in interconnects, and in finding ways to reduce the likelihood of failure.

The material in an interconnect line is subjected to mechanical stress, which provides
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Fig. 1. Features of a typical interconnect line.

one driving force for void nucleation and growth. Interconnects are usually deposited
on a semiconductor substrate, and covered with a thick layer of oxide. This passivating
layer is deposited at high temperature (400°C is typical), and the device operates at a
lower temperature (100°C). Since the thermal expansion coefficient of aluminium is
of the order 20 x 10~¢ K ~!, while that of the surrounding material is 5x 107 K =",
large tensile stresses are induced in the line by the manufacturing process. One may
estimate the magnitude of the stresses by assuming that the solid remains elastic : this
suggests that the vertical stress o, ~ 200 MPa; the lateral stress g, ~ 800 MPa, and
the longitudinal stress o, ~ 900 MPa (Korhonen er al., 1991a). These stresses are
sufficient to induce plastic deformation in the line, and indirect experimental evidence
suggests that voids are nucleated when the solid is cooled to room temperature after
passivation (Korhonen ef al., 1991b). The most common nucleation site appears to
be where grain boundaries intersect the edge of the line, but voids are also observed
away from the line edges, and near the center of the grains. Because of the constraining
effect of the semiconductor substrate and the overlying oxide layer, the voids are
initially small compared to the width of the line. However, they continue to grow,
migrate and change their shape during service. Diffusion plays a central role in this
process : voids may change their shape due to surface diffusion, while material may
be removed from a void by grain boundary and lattice diffusion.

During service, a dense electric current flows through interconnect lines. Current
densities of 10° A cm™? are typical ; accelerated tests are often performed at current
densities up to 10" A cm 2 The current flow has a number of consequences. It heats
the line, which increases the rate of diffusion and may also affect the thermal stress
distribution. The current also causes material to diffuse along the line, due to a
phenomenon known as electromigration. In aluminium, material diffuses in a direc-
tion opposite to the electric current, at a rate approximately proportional to the
current density. The rate of material flow is not uniform along the length of the
line, due to irregularities in the microstructure or geometry of the line, and due to
temperature gradients. Material therefore tends to accumulate in some sections of the
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line, and is removed from others. This induces severe stresses in both the interconnect
and the surrounding material, which may cause the material surrounding the line to
crack and also increase the rate of stress induced void growth in the line. Voids may
grow as a direct result of electromigration, since the electric current may cause material
to diffuse away from the voids along grain boundaries. Electromigration can also
cause voids to translate along an interconnect line, by relocating material from one
side of the cavities to the other (Ho, 1970). In-situ TEM and SEM observations show
that voids travel large distances along the line, and constantly change their shape as
they do so (Marieb ef al., 1994 ; Riege et al., 1995). Small voids travel more quickly
than large ones, and void coalescence has been observed as one mechanism leading
to open circuits. A void can also sever a line by changing its shape. Most voids in
interconnects are well rounded, and an interconnect can contain a large number of
such voids without serious consequences. However, a few voids resemble narrow
cracks, oriented perpendicular to the line, and are often found to cause open circuits.
The origin of these crack like voids is not fully understood, but it has been suggested
that high stresses and high electric fields can cause a rounded void to collapse into a
crack, by a process involving surface diffusion (Arzt et al., 1994 ; Yang et al., 1994).

There is hope that interconnect failures may be avoided by designing the micro-
structure and geometry of the line appropriately. For example, it has been shown that
lines with a “bamboo” grain structure, with grain boundaries oriented perpendicular
to the line direction as shown in Fig. 1, are resistant to failure. Some success has also
been reported using single-crystal lines (Hasunuma et al., 1995). Computational
techniques such as the finite element method offer an inexpensive and versatile way
to design against failure, and conventional finite element methods have been used
successfully to analyze stress and damage in interconnect lines. However, there are
several phenomena which play an important role in interconnect failures, that are not
considered in standard techniques for structural failure analysis. The effects of stress
and electromigration induced diffusion are particularly difficult to model.

Some progress has been made in developing finite element methods to solve prob-
lems involving coupled diffusion and deformation. Needleman and Rice (1980)
derived a variational principle governing grain boundary diffusion and plastic flow in
a rigid-power law creeping solid, which they used as the basis for a finite element
analysis of grain boundary cavitation. Their approach has since been extended and
applied to a range of problems involving grain boundary diffusion by Cocks and co-
workers (Cocks, 1989; Cocks and Searle, 1991 ; Pan and Cocks, 1995; Cocks and
Gill, 1996); the method has also been used to investigate void growth by grain
boundary diffusion in interconnect lines (Bower and Freund, 1993). Recently, Bower
and Freund (1995) developed a numerical scheme specifically intended to model
electromigration in deformable solids. They used the finite element method to solve
the coupled equation governing diffusion, deformation and electric current flow
through the solid. The analysis accounted for the effects of both grain boundary and
surface diffusion, as well as elastic or creep deformation within the interconnect. The
model was able to predict many of the features that have been observed in inter-
connects, including void migration, changes in void shape and electromigration
induced stress and plastic deformation.

In this paper, we have extended the finite element method described in Bower and
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Fig. 2. A void in an electrically conducting, elastic solid.

Freund (1995) so as to solve the problems involving pure surface diffusion in elec-
trically conducting, linear elastic solids. In particular, we have developed a new
approach to integrating the surface diffusion equations; we have implemented an
improved mesh adaption strategy ; and we have included the influence of elastic strain
energy in driving surface diffusion. We will demonstrate that the method is effective
and accurate by applying it to a range of case studies. Furthermore, it is straight-
forward to extend the method to situations involving inelastic deformation, and to
account for additional phenomena such as heat generation and flow in the solid.

The problem to be solved is illustrated in Fig. 2. We idealize the interconnect line
as a linear elastic solid, which conducts electric current according to Ohm’s law. The
solid is loaded mechanically by subjecting its boundary to a prescribed distribution
of traction or displacement, while an electric field is induced in the line by prescribing
either the voltage or the electric current density on its boundaries. We assume that
the line deforms in a state of plane strain, and that the displacements are infinitesimal ;
similarly, we assume that the electric field in the line has no component normal to the
plane of the figure. The line may contain one or more voids, whose initial shape is
assumed to be known.

The electric field in the line, together with the elastic strain energy, give rise to an
externally induced driving force for diffusion in the solid. Diffusion is also driven by
the surface or bulk free energy of the material. Atoms tend to diffuse from regions of
high chemical potential to those of low chemical potential, and so cause a change in
shape of the stress free reference configuration of the solid. In practice, matter may
diffuse through the crystal lattice, along surfaces and through grain boundaries.
However, the rate of diffusion is generally much greater along surfaces and grain
boundaries than through the lattice, so we have chosen to neglect bulk difficulties in
our analysis. For simplicity, we have also assumed that the line contains no grain
boundaries : diffusion is therefore confined to the surface of the void.

Surface diffusion may cause voids in the line to change their shape. In the absence
of external mechanical or electrical loading, the void will approach the shape that
minimizes the total surface free energy. We have assumed that the surface energy of
the solid is isotropic, in which case the energy minimizing shape is a cylinder. When
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the solid is loaded, the electric field and elastic strain energy also drive diffusion on
the void surface, and may cause the void to drift through the solid and to change its
shape.

We will describe a finite element procedure which can be used to compute the
resulting behavior of the void. The convergence and accuracy of the method will be
illustrated by comparing its predictions to exact solutions. We will then present several
case studies to illustrate the effects of stress and electromigration induced surface
diffusion on voids in interconnect lines.

Our objective in this paper is to describe methods that may be used to model some
of the failure mechanisms in interconnect lines, rather than to conduct an exhaustive
study of the failure mechanisms themselves. Many of our assumptions are unrealistic:
for example, we have neglected the influence of inelastic deformation, have ignored
the effects of grain boundaries and have assumed plane deformation. These issues are
promising areas for future research.

2. GOVERNING EQUATIONS

We begin by outlining the assumptions that we have made in our analysis. Consider
the idealized interconnect line shown in Fig. 2. Our objective is to compute the stress
and deformation induced in the solid by the mechanical loads ; to find the distribution
of electric field and current in the line, and to deduce the resulting change in shape of
the void.

The void changes its shape because atoms diffuse over its surface. In addition, the
deformation induced by mechanical loading will cause a displacement of material
points on the void surface. In this work we have assumed that the solid is elastic so
that the displacements due to mechanical loading are small. Therefore, changes in
shape caused by deformation do not influence diffusion on the void surface.

In the absence of electrical current, surface diffusion is driven by a variation in
chemical potential, which causes atoms to migrate from regions of high chemical
potential to those of low chemical potential. There are two contributions to the
chemical potential of an atom on a free surface. The first is associated with the free
energy of the surface, while the second is due to the elastic strain energy stored in the
volume of material associated with an atom. Thus

©= o+ —7:K), (2.1

where p, is the chemical potential of the bulk ; Q is the atomic volume, ¢ = %a,.js,»j is
the elastic strain energy density, 7, is the surface energy and « is the curvature of the
surface. The sign convention for «x is such that a concave surface (such as a void
surface) has positive curvature ; a convex surface (a hillock, for example) has negative
curvature. We assume that the rate of mass transport is proportional to the gradient
in potential. If an electric current flows down the line, it gives rise to an additional
driving force for diffusion : the mass flow rate due to electromigration is taken to be
proportional to the component of electric field tangent to the surface. Thus, the total
flux on a void surface may be expressed as



1478 L. XIA et al.

. ou *0V
= — —_— — o
Js @s( 25 lelZ a5 ) 2.2

where s denotes the arc length measured from some convenient point on the void
surface; j; is the volume of material which crosses a line of unit length perpendicular
to the (x,y) plane per unit time; du/0s denotes the gradient in chemical potential
along the void surface ; V'is the electrical potential, — dV/és is the electric field tangent
to the surface; e is the charge of an electron; Z* is the “effective valence™ of an
atom (a phenomenological constant which is positive for aluminium); and %, is a
temperature dependent constant, related to the coefficient of surface diffusion by
Dsés —Q kT P
@, = o7 © . 2.3)

In (2.3), D, exp(— Q,/kT) is the surface diffusion coefficient and J; is the thickness of
the diffusion layer. Q;is the activation energy for surface diffusion, 7'is the temperature
and k is the Boltzmann constant.

The rate at which material is deposited or removed from an element is related to
the divergence of the surface flux by mass conservation. Thus, the normal velocity of
the surface of the void in the reference configuration is

s
O = =5 (2.4)
Combining (2.2) and (2.4) shows that

. ¢ ok LV
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To compute the flux on the void surface and the resulting motion of its boundary,
one must determine the distribution of strain energy and electric field in the solid.
The deformation induced by the mechanical loading may be described by the dis-
placement field #,(x;) of material points from the stress free configuration of the solid.
Then, the deformation may be characterized by the infinitesimal strain

&= %(ui,j'i_ujj)a 2.7

where the comma denotes partial differentiation with respect to a spatial coordinate,
in the usual manner. We have assumed that the interconnect is an isotropic, linear
elastic solid, so the stress field is related to the strains by

E v
0y = 1__._‘) &+ 1—_'2vv£kk5(j s

where E and v denote Young’s modulus and Poisson’s ratio, respectively. The stress
field in the solid must be in mechanical equilibrium, which requires
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We assume that the solid deforms in a state of plane strain, with displacement
components u; and u, independent of x;, and u;(x,, x,) = 0. The displacements are
prescribed over parts of the boundary ¢,#, while the tractions ¢, = o;;n; are prescribed
over the remainder of the boundary 2,%. The surface of the void is free from tractions.
These conditions are sufficient to determine the displacement, strain and stress fields
in the solid. Subsequently, the distribution of elastic strain energy ¢ = %o,-,s,:,- may be
deduced.

One must also determine the electric field in the solid. Suppose that V(x,) denotes
the electrical potential at a point (x, x;, x3) ; let p be the electrical resistivity of the
material, and denote the components of current density in the line by Ji(x;). Ohm’s
law and charge conservation require that

pJi= =V, J,;=0. (2.9)

We assume that the current flows only in the (x,, x,) plane, which requires V; = 0.
The distribution of voltage is prescribed over the ends of the line, while the normal
component of current density J;n; is assumed to vanish on the remainder of the
boundary. In particular, J.#, = 0 on the void surface.

3. NUMERICAL PROCEDURE

We have used a finite element procedure to solve the equations outlined in the
preceding section. It is convenient to perform the calculation in three separate steps.
Consider the interconnect sketched in Fig. 2. Suppose that the shape of the stress free
reference configuration for the solid at time ¢ is known : our objective is to calculate
the deformation and diffusion in the solid that occur during a subsequent infinitesimal
time interval Az. The first step is to calculate the distribution of voltage V(x)) in the
solid at time 7. Secondly, we compute the change in displacement field «; and stress
field o;; as a result of mechanical loading and diffusion in the solid. To do so, we
solve the equations of mechanical equilibrium and the diffusion equations, using the
configuration at time ¢ as a reference. Finally, we update the shape of the voids, which
change their shape as a result of diffusion.

We have used a standard procedure to calculate the distribution of voltage. Equa-
tion (2.9) is written in its weak form

1
J AVJ.(SV‘,.dA—i-J‘ JndVds =0, @3.1)
agp R

where # denotes the two dimensional region occupied by the solid, 0% denotes its
boundary and 8V is an admissible variation in voltage, which satisfies 6/ = 0 on
regions of the boundary where voltage is prescribed. Equation (3.1) must hold for all
such 6 V. It is straightforward to solve this equation using a standard finite element
method. We have found it convenient to approximate the distribution of voltage using
six noded (quadratic) triangular elements, since the mesh may then be generated
automatically, using an advancing front algorithm (Peraire et al., 1987).
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The equations of mechanical equilibrium may also be solved using the standard
finite element method. In the usual way, we calculate the displacement field ; and
stress field o; that satisfy

j o,0u; ;dA = f t,0u; ds (3.2)
R R

for all variations in displacement du; satisfying du; = 0 on ¢,4. It is convenient to
interpolate both 7 and ; with the same finite element mesh, so (3.2) is also reduced
to a discrete form using quadratic triangular finite elements.

Finally, we solve the surface diffusion equation to deduce the change in shape of
the void during the time interval Az. We have devised two finite element based
procedures to do this. In the first method, we write a weak form of (2.6) directly,

0%ov,
0s?

J v,ov, ds = J Z(Qd—y QK —|e|Z*V) ds, 3.3)
r r

and solve for the surface velocity which satisfies (3.3) for all admissible variations dt,,.
Our second approach uses a mixed formulation : instead of computing v, directly, we
calculate the flux j; by enforcing (2.5) in its weak form

25j
J .o ds = J Qs(ﬂqb—ysQK—leIZ*V)a—fds, (.4)
r

r

which must hold for all admissible variations in flux dj,. The surface velocity v, is then
determined from (2.4). This formulation has the advantage that mass conservation is
enforced over the entire surface of the void, whereas the expression given in (3.3)
guarantees only that the total mass of the solid is conserved. This improvement is
obtained at the cost of having to interpolate j; with continuously differentiable shape
functions.

To compute the change in shape of the void, one must integrate either (3.3) or (3.4)
with respect to time. The equations are stiff, owing to the term involving the curvature
of the void surface. We have integrated them using a semi-implicit Euler scheme. Let
Ah(s) denote the normal displacement of the void surface in the reference con-
figuration during the time interval Az. In a forward-Euler time integration scheme,
one would set Ak = Ar,(1), where the normal velocity of the void surface is obtained
by solving (3.3) or (3.4) at time ¢. We have found that this algorithm is stable only if
the time step A7 is prohibitively small. Much larger time steps may be taken if we use
a first-order predictor for the curvature of the void. Let x, denote the curvature of
the surface at time 7. Then, the curvature at time ¢+ Af may be estimated as

2

32 Ah
K1+ A1) = Ko+ 5=+ KEMR+ O(AR). 3.5)
S

To compute v, or j, from (3.3) or (3.4), we approximate the curvature using
Kk = (1 —o)xo +ox(t+ Af), (3.6)

where 0 < a < 1 is an adjustable parameter controlling the integration scheme, and
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k(2+ At) is estimated using (3.5). Setting « = 0 reduces the integration formula to the
standard explicit forward-Euler scheme, while « = 1 represents the first iteration in a
fully implicit integration scheme. As usual, the integration scheme is most stable with
o = 1, while o & 0.5 appears to give the best accuracy. In most of the simulations to
be presented here, we have set a = 1.

Finally, substituting (3.5) and (3.6) into (3.3) or (3.4) shows that the change in
shape of the void may be computed either by solving

02 Ah 025
Ahdv, +aAtD 3,9 [ =28 12 Ar | 2200 gs
r os? os*
0 ov,
= | AD. Q=10 = 1e|Z*1) " s (37)
r A

for Ah directly, or else by finding the flux j, which satisfies

0dj,
3s ds, (3.8)

PN 63 .s 2 aJs aajs *
‘Ljséjs—ozAt@sySQ(as3 +K§ a)—éyds = L@s(gqb— v QKo — |e|Z* V)

and then computing the normal displacement from Ah = — Atd},/d".

We have used these results to develop a finite element method for computing the
shape of a void in an interconnect. At time ¢ = 0, the initial shape of the void is
specified by a set of “control points” on its perimeter ; other boundaries of the solid
are described in the same way. The geometry of the solid is then interpolated between
these points, using cubic parametric splines. The analysis begins by generating a mesh
of six noded, triangular elements to fill the region occupied by the solid. We have
found the advancing front algorithm described by Peraire et al. (1987) to be par-
ticularly effective for this purpose. In this approach, each boundary is first subdivided
into a set of faces, which connect a set of boundary nodes. This set of faces is termed
the initial “front”. Triangular elements are then created, starting from the smallest
face on the front. This face is taken as the base of the new element, and the triangle
is formed either by identifying a suitable node on the front which should form its
vertex, or by generating a new node. If a new node is introduced, its position is chosen
so as to generate an element with a specified height. Once the triangle has been
generated, the front is updated : segments on the existing front which coincide with
one of the sides of the new triangle are removed, while new sides of the triangle are
added to the front. This procedure is repeated until there are no faces left on the
front. The quality of the final mesh is improved by shifting the position of each node
in the mesh slightly, using Laplacian smoothing (Cavendish, 1974). Finally, mid-side
nodes are added to each triangle to form six noded quadratic elements. We have used
the data structures and operations suggested by Lohner (1988) to ensure an efficient
implementation of the algorithm.

The advancing front algorithm allows one to generate a mesh with a variable
element size. In most of the computations described here, we have used a particularly
simple approach to control the mesh density. The size of the faces which form the
initial front on the void surface are controlled by the local value of the strain energy
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density on the surface (a uniform mesh is sufficient for many simulations). When
elements are generated along the front, the height of each triangle is taken to be
somewhat greater than its base. This procedure generates a fine mesh around the
void, and a coarse mesh away from it.

Once a mesh has been generated, the standard finite element method is then used
to compute values of voltage and displacement at each node on this mesh; nodal
values of strain energy density are also determined, either by extrapolating the values
from the integration points of each element, or using a variational recovery procedure
(Oden and Reddy, 1973 ; Hinton and Campbell, 1974).

Next, we calculate the change in shape of the void surface during a time interval
At, by solving (3.7) or (3.8) using a finite element procedure. The corner nodes and
element faces on the surface of the void are taken to comprise a one dimensional finite
element mesh for interpolating field variables in (3.7) or (3.8). The initial curvature
K, is determined at each node by fitting a parametric cubic spline through the nodes
on the boundary. The voltage and strain energy densities are transferred from the
mesh in the interior of the solid. To solve (3.7), we approximate A4 and dév, within
each element by interpolating between values at the nodes. Note that for the finite
element procedure to converge, one must chose interpolation functions such that both
Ah and 0(Ah)/ds are continuous across neighboring elements ; év, must be interpolated
in the same way. We therefore approximate Ah(s) using a piecewise cubic Hermitian
interpolation between the values of A and its derivative d(A#)/ds at each node, and
use a similar procedure for év,. The values of x,, ¢ and V within each element are
determined using a piecewise linear interpolation between their nodal values. Equation
(3.7) is then reduced to a system of linear equations which may be solved for the
nodal values of Ak and ¢(Ah)/és.

Equation (3.8) may be solved for j; using a similar approach. In this case, the flux
Jjsmust be interpolated so that j; and both its first and second derivatives are continuous
across neighboring elements. We therefore approximate j; using a piecewise quintic
Hermitian interpolation between nodal values of j; and 0j;/és. The shape functions
are recorded in the Appendix for convenience. The curvature, voltage and strain
energy density are approximated using a piecewise linear interpolation between the
nodes, as before. This reduces equation (3.8) to a system of linear equations which
may be solved for the nodal values of j, and ¢j,/6s. Finally, we compute the change in
position of each node on the void surface from the nodal values of gj,/ds, using
Ah = — Atdj/os.

The results are used to update the coordinates of nodes on the surface of the void.
The nodes on each boundary of the solid are then taken as new control points, which
specify the geometry of the solid at time Az. A new finite element mesh may then be
generated in the interior of the solid, and the procedure is repeated to compute the
progressive change in shape of the void.

The time step Ar must be chosen with care : our algorithm for integrating the surface
diffusion equations with respect to time is conditionally stable. The stability of the
algorithm is greatly improved if the numerical parameter o = 1 ; nevertheless, insta-
bilities may still occur if At is too large. The difficulty is caused by the terms involving
curvature in (3.7) and (3.8) : small changes in the positions of the points on the void
surface can lead to large changes in curvature, so small time steps must be taken to
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compute the rate of change of curvature accurately. The electric and elastic fields in
the solid change more slowly as the surface of the void evolves. Consequently,
subcycling may be used to speed up the numerical procedure. The electric and elastic
fields in the solid are computed once ; then, the surface diffusion equation is solved
several times with a small time step. The curvature of the void surface x; is updated
each time the equation is solved, but the values of voltage or elastic strain energy are
updated less frequently. We have found that using between 10 and 100 subcycles
between each computation of the elastic or electric fields gives good results.

4. RESULTS AND DISCUSSION

We describe several case studies to demonstrate the accuracy of our numerical
procedure and to illustrate its capabilities.

4.1. Diffusion under surface tension alone

For the first example, consider a solid which contains an initially elliptical void,
and assume that the solid is free of stress and electric current. In this case, surface
diffusion is driven only by the surface free energy of the solid, and the void changes
its shape so as to reduce its surface area. This behavior is illustrated in Fig. 3: the
initial void has semiaxes with b/a = 0.1, and the profile of the void is shown at equally
spaced time intervals At2Qy./a* = 0.0004, where A12,Qy./a* is a dimensionless mea-
sure of time. As expected, the stable profile of the void is a circle. An exact solution
to this problem is not available, but we may use the initial velocity of the surface of
the void as a check on the accuracy of our numerical method. For an ellipse with a
profile given by

x =acosf y=bhsinf 4.1
the curvature is

ab
Ko = "5 2 2 232’
(@’ sin® 0+ b° cos® 0)*

(4.2)

so that the normal velocity of the surface of the ellipse follows as

Fig. 3. A cavity with an initially elliptical profile, evolving due to diffusion driven by surface energy. The
ellipse has semiaxes a/6 = 0.1, and profiles are shown at equally spaced intervals At2 Qy ja* = 0.0004.
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Fig. 4. The initial velocity of the surface of an elliptical void which evolves due to diffusion driven by
surface energy. The velocity is expressed in dimensionless form as 7, = v,a*/2Qy..

b [@® sin? (1 +4 cos® 8) — b? cos? 6(1 +4sin? §)]

. = 3Dy, (b* —a? ;
v v —a) (a® sin? 0+ b* cos? 6)%2

(4.3)

Figure 4 shows the exact value of the dimensionless velocity 7, = v,a°/Q%,y, for
ellipses with initial semiaxes in the ratio b/a = 0.3, 0.4 and 0.5. The result obtained
using the finite element interpolation of (3.8) is shown as a set of symbols for
comparison. We have not shown results obtained using (3.7), since they are virtually
indistinguishable from the results obtained by interpolating fluxes, (3.8).

The elliptical cavity provides a convenient solution to check the convergence of the
finite element solution to the surface diffusion equations. Define a measure of error

1 L . 1/2
éa — {ZJ (vixact _Uﬁumencal)Z/[v?ax]z ds} , (44)

0

where L denotes the circumference of the ellipse; v is computed from (4.3); o7
is the maximum value of v ; and the numerical solution is obtained using the finite
element interpolation of (3.7) or (3.8). Figure 5 shows the variation of & with the
number of (uniformly spaced) elements used in the finite element interpolation, for
solutions based on both (3.7) and (3.8). The result shows that both methods tend to
converge at a similar rate, but for a given number of elements, the solution obtained
by interpolating flux j, and its derivative (3.8) appears to be somewhat more accurate
than that based on (3.7). We therefore used this approach to obtain the remaining
results in this paper. For very large numbers of elements (N > 1000), the rate of
convergence of the solution obtained using (3.8) decreases; for N > 10,000 we have
observed a similar reduction in the rate of convergence of the method based on (3.7).
We believe that this is a consequence of rounding errors.
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Fig. 5. Hlustrating the convergence of the finite element solution to the surface diffusion equations. The
measure of error is defined in (4.4).

4.2. Electromigration driven voids

For our second test, we investigate the behavior of a void in an electrically con-
ducting strip (Fig. 6). The strip has length L and height H; at time ¢ = 0, a cavity
with radius a lies on the symmetry axis of the strip. An electric current is induced in
the solid by prescribing the voltage on bothitsends: V= Vy,onx =0,and V' = 0 on
x = L. The solid is free of mechanical stress. The current flow causes material to
diffuse from one side of the cavity to the other, so the void appears to migrate through
the strip. If the radius of the void is small compared to the dimensions of the strip,
then the cavity remains circular, and its speed may be calculated exactly (Ho, 1970):

YD le|Z*E*~

Vcavity = 2—r > (45)

AT YA
XDAPECRD
B0

ATATAT TN TATAT TN
KNSRI
AAA AT RS

(b) t/4,;=0.1581

2T O N Y
A NSO AY
SRR N A

IS Y AT NTS
SRR A

-y A
A ORI

(c) t/t,=0.3084 (d) t/t;=0.4544

—_—

V/VO | S

0.000 0.143 0.286 0.429 0571 0.714 0.857 1.000

Fig. 6. Stable migration of a void in a stress free, electrically conducting strip. Results are shown for y = 10
[equation (4.6)]; a/H = 0.25; L{H = 5. The characteristic time 1, = a*/%Qy,; the contours show voltage.
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Fig. 7. A void in a stress free, electrically conducting strip, as it collapses into slits. Results are shown for
¥ = 30 [equation (4.6)]; a/H = 0.25; L/H = 5. The characteristic time is 1, = a*/2Qy,; the contours show
voltage.

where E* = V,/L is the electric field remote from the void. For large values of Hja
and L/a, our numerical solution is within 1% of the exact solution.

The void remains circular, as long as it is small compared to the width of the line.
If the diameter of the void is comparable to the line width, the void tends to adopt a
spade shape, as shown in Fig. 6. The void shape is then governed by two dimensionless
parameters : the ratio of void size to line width ¢/H and a parameter x which specifies
the ratio of the electromigration driving force to the driving force associated with
surface energy (Wang et al., 1996),

x = VolelZ*a® QL. (4.6)

For low values of y, the driving force associated with surface energy dominates over
the electromigration force, so the void tends to remain circular. For high values, the
electromigration driving force causes a significant change in shape.

If the parameter y exceeds a critical value, one finds that an initially circular void
collapses into one or more slits. Figure 7 illustrates this phenomenon. In the example
shown, two slits emerge from an initially circular void, and propagate along the line.
It has been suggested that this type of shape instability may be responsible for causing
open circuits in the line. If a void collapses into a slit which is perpendicular to the
line, then a void with a relatively small size may sever the interconnect. Qur simulations
suggest that slits collapse along a line rather than across it, in agreement with the
results obtained by Bower and Freund (1995). Furthermore, shape instability may
eventually cause a large void to break up into two or more smaller cavities, so reducing
the changes of an open circuit.

The critical value of x at which a void will collapse into a slit depends on the initial
geometry of the cavity and on the geometry of the interconnect line. A circular void
in an infinite, conducting solid is stable to first-order perturbations in its shape
(Marder, 1994, as cited in Wang et al., 1996). Therefore, if the void is perfectly
circular, and is much smaller than the line width, it will remain circular. The void
may collapse if its initial shape is appreciably non-circular: for example, Wang ez al.
(1996) have computed the critical value of y at which an elliptical cavity will collapse,
as a function of the eccentricity of the initial void. Here, we have calculated the value
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of  required to collapse an initially circular void which lies on the symmetry plane
of an interconnect of height H, as a function of the ratio of the initial void size to the
line width a/H. The result is displayed in Fig. 8.

4.3. Void instability under stress

The shape of a void in an interconnect is influenced not only by the electric current
flow, but also by the distribution of stress in the line. Figure 9 shows a small circular
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Fig. 9. Stable evolution of a circular cavity in an elastic solid under remote stress. Results are shown for
A =020, =00, =0, contours show the distribution of maximum principal stress ,/6,.



1488 L. XIA et al.

3 -2 -1 -3 -2 -1
() t/1,=0.00496 (d) t;=0.00513
o/o, [ |
0.0 1.0 2.0 30 4.0

Fig. 10. Evolution of cracks from an initially circular void subjected to remote stress. Results are shown
for A = 0.6, 6, = 0, 6,, = 0,; the characteristic time is 1, = a*/2,Qy,; contours show the distribution of
maximum principal stress 7,/q,.

cavity of radius « in an isotropic, linear elastic solid. The boundaries of the solid are
subjected to normal tractions, which induce uniform principal stresses o,,, ¢,, remote
from the void. The solid is free of electric current. Variations in strain energy around
the void surface cause atoms to migrate from regions of high energy to those of low
strain energy. This causes the void to change its shape, as shown in Fig. 9. Once the
void changes its shape, the mass flux over its surface is opposed by variations in
curvature. The relative magnitudes of the driving forces associated with deformation
and surface energy may be quantified by a dimensionless parameter A :

(6°)’a
A =
Ey,

, 4.7

where 6™ is the maximum principal stress remote from the void. For small values of
A, surface energy dominates : in this case the void steels to an approximately elliptical
shape, as shown in Fig. 9. If A exceeds a critical value, then the void collapses to a
slit oriented perpendicular to the maximum principal stress (Suo and Wang, 1994).
The initial stages of this process are shown in Fig. 10. The void first adopts an elliptical
shape, then develops two noses, which subsequently sharpen.

There is evidence to suggest that these noses collapse to sharp cusps, with a singular
curvature and strain energy density at the cusp tip (Suo and Wang, 1994 ; Wang and
Suo, 1997). It is difficult to approach this limit using our numerical procedure,
since singular states of stress are not represented accurately by our finite element
interpolation scheme. However, we have performed careful numerical computations
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Fig. 11. Details of the emergence of a crack from an initially circular void. Results are shown for A = 0.6,

6.+/0,, = 0. (a) Profiles of the tip of the notch, shown at successive intervals of time; (b) variation of the

dimensionless normal velocity of the surface #, = v,a’/2.Qy,; (c) the curvature of the surface of the void
near the notch tip; (d) the variation of the maximum curvature at the notch tip with time.

to elucidate some of the features associated with the development of the cusps. Figure
11a shows successive profiles of the cavity in the region around one nose, as successive
intervals of time. The variation in the normal velocity of the void surface near the tip
of the nose is shown in Fig. 11b. Figure 11¢ shows the variation in curvature near the
tip of the notch, while Fig. 11d shows the maximum curvature as a function of time.
As the nose forms, both the velocity of the void tip and the maximum curvature
increase extremely rapidly, suggesting that a crack will indeed emerge from the tip of
the nose. This behavior is very similar to the roughening of a slightly non-planar
surface due to strain energy driven surface diffusion. Detailed studies of crack for-
mation in this system have been conducted by Chiu and Gao (1993, 1994) and by
Gao (1995), among others. Of course, in practice, the formation of a sharp crack tip
may be prevented by plastic deformation, either owing to dislocations emitted from
the crack tip itself, or owing to dislocations nucleated from sources within the solid.

4.4. Void instability under combined stress and electric field

Finally, we investigate the behavior of a cavity in an interconnect under both stress
and electric current flow. Consider a rectangular strip, height / and length L, which
contains an initially circular void of radius a. An electric field is induced in the solid
by prescribing the voltage at both ends of the strip: V= FV,onx =0,and V=0 on
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Fig. 13. A void collapsing into cracks under combined stress and electric field. Results are shown for
y=10,A = 02,0, = 06, 0,, = 0. The characteristic time t, = a*/2,Qy,; contours show maximum principal
stress o,/0,.

x = L. The faces x = 0, x = L are subjected to normal tractions a,,, while the faces
y = 0, y = H are subjected to normal tractions ¢,,. The behavior of the void is now
determined by the values of x [equation (4.6)], A [equation (4.7)] and the ratio o, /a,,,
as well as the geometry of the solid ¢/H, L/H. For small values of both x and A,
surface energy dominates over all other driving forces for surface diffusion ; the void
then remains circular and migrates along the line, as discussed earlier. For large values
of y or A, both electromigration and strain energy variations in the solid tend to cause
the void to develop slits or cracks. Electromigration and strain energy appear to act
in a cooperative manner, so as to promote the emergence of cracks. For example,
Fig. 12 shows the evolution of a void for y = 10 and A = 0.1, while Fig. 13 shows
void evolution for y = 10 and A = 0.2. For A = 0.1, the void collapses into two lobes,
as it would in the absence of stress. For A = 0.2, two cracks begin to emerge from the
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tips of the lobes. Recall that in the absence of electric current, cracks form only when
A > 2/3.

Stresses in interconnect lines are close to hydrostatic: it is interesting to observe
the behavior of voids in the line under these conditions. Figure 14 shows results
obtained with the normal tractions ¢,, and g,, equal, for y = 10 and A = 0.2. A single
sharp nose emerges from the void in the direction of the line; the stress field is
sufficient to suppress the two lobes that form in the absence of mechanical loading.

It is notable that we have not observed slits to form perpendicular to the lines in
any of our simulations involving both electric current flow and stress. It is possible
that elastic anisotropy, or anisotropy in the surface energy may promote the formation
of such slits. The presence of grain boundaries in the line is also expected to influence
the migration and evolution of the voids. These are promising areas for future work.
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APPENDIX

For convenience, we list below the finite element interpolation functions used to solve (3.8).
Let j,(s) denote the variation of flux with arc length over the surface of the void. Suppose that
the s©, with i = 1,2, ..., N denote the position of N discrete points on the void surface, with
S0 < 50 <« 5D Let j© denote the value of the flux at the ith point, and let v denote the
velocity of the void surface (v, = —dj,/ds) at s = s, Over the region s < s < s+, we then
interpolate j; as

Jo(8) = Ny ()L + N2 ()0l + N3 (D + No(s)vi™ D,
where
Ni(9) = (1=8)> (1 +3E+6&%)  N,(s) = —h&(1-¢)*(1438)
N;(s) = E(10-158+6&%)  Nu(s) = —h&(1-8(3¢-4)

with /2 = s+ D —s@ and & = (s—s?)/h.



