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Abstract

A large quantity of small molecules may migrate into a network of long polymers, causing the network to swell, forming

an aggregate known as a polymeric gel. This paper formulates a theory of the coupled mass transport and large

deformation. The free energy of the gel results from two molecular processes: stretching the network and mixing the

network with the small molecules. Both the small molecules and the long polymers are taken to be incompressible, a

constraint that we enforce by using a Lagrange multiplier, which coincides with the osmosis pressure or the swelling stress.

The gel can undergo large deformation of two modes. The first mode results from the fast process of local rearrangement

of molecules, allowing the gel to change shape but not volume. The second mode results from the slow process of long-

range migration of the small molecules, allowing the gel to change both shape and volume. We assume that the local

rearrangement is instantaneous, and model the long-range migration by assuming that the small molecules diffuse inside

the gel. The theory is illustrated with a layer of a gel constrained in its plane and subject to a weight in the normal direction.

We also predict the scaling behavior of a gel under a conical indenter.

Published by Elsevier Ltd.
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1. Introduction

When a species of long polymers are cross-linked into a three-dimensional network, the resulting material,
known as an elastomer, is capable of large and recoverable deformation. Another species of molecules, of a
low molecular weight, may act as a solvent. When the elastomer is in contact with the solvent, the small
molecules can migrate into the network, forming an aggregate known as a polymeric gel. Inside the gel, the
small molecules interact among themselves, and with the long polymers, in the same way as molecules in a
liquid. That is, the gel is a condensed matter that fills the space, and the small molecules can readily change
neighbors. The cross-links prevent the long polymers from dissolving in the solvent; rather, the gel swells and
shrinks reversibly as the small molecules migrate in and out.
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Polymeric gels are used in diverse technologies, including medical devices (Jagur-Grodzinski, 2006), drug
delivery (Duncan, 2003; Fischelghodsian et al., 1988; Jeong et al., 1997; Langer, 1998), tissue engineering (Luo
and Shoichet, 2004; Nowak et al., 2002), and stimuli-sensitive actuators (Beebe et al., 2000; Dong et al., 2006;
Sidorenko et al., 2007). These applications aside, others and we are also intrigued by gels as a model system
that couples mass transport and large deformation, driven by multiple thermodynamic forces, exhibiting
complex behaviors. See an online discussion of the mechanics of gels led by Qi (2007). The present paper aims
to develop a field theory of coupled mass transport and large deformation in polymeric gels.

Field theories of mass transport in elastic solids date at least back to Gibbs (1878), who formulated a
thermodynamic theory of large deformation of an elastic solid that absorbs a fluid, assuming that the solid and
the fluid have equilibrated. Biot (1941) combined a similar thermodynamic theory with Darcy’s law to model
the motion of a fluid in a porous elastic solid. The resulting theory, known as poroelasticity, has been used to
analyze phenomena ranging from compaction of soils to deformation of tissues. Rice and Cleary (1976)
presented several fundamental solutions in poroelasticity. Larche and Cahn (1985) formulated an analogous
theory for diffusion of atoms in an elastic crystal. Lai et al. (1991) included the effects of ions and electric
fields, with applications to bones and cartilages. The literature has been reviewed by, among others,
Detournay and Cheng (1993), Cowin (1999), Wang (2000), and Coussy (2004).

Several groups have formulated theories specifically to couple mass transport and deformation in gels,
invoking various conceptual pictures (e.g., Tanaka and Fillmore, 1979; Durning and Morman, 1993; Dolbow
et al., 2004, 2005; Tsai et al., 2004; Li et al., 2007). Both the concepts and the materials are sufficiently
complex such that ample room exists for additional theoretical work to connect principles of mechanics,
thermodynamics, and kinetics to experiments and to molecular models.

This paper formulates a field theory in the tradition of Gibbs (1878) and Biot (1941, 1973). We phrase the
theory in terms of nonequilibrium thermodynamics (e.g., Prigogine, 1967; Coleman and Noll, 1963). Such a
theory, however, leaves open the free-energy function and the kinetic law, both being material specific. We will
specify them according to the following qualitative pictures.

We first consider thermodynamics. As the small molecules mix with the long polymers, the network swells,
so that the configurational entropy of the network decreases, but the configurational entropy of mixture
increases. Their compromise tends to equilibrate the gel and the solvent, setting the equilibrium swelling ratio.
This part of the theory follows directly that of Flory and Rehner (1943), which we have used in a recent study
of dielectric gels (Zhao et al., 2007).

We next consider kinetics. For the network of the long polymers to deform, the small molecules in the gel
must change neighbors, a process that is thermally activated, of the same kind as that in a liquid. Fig. 1
sketches two modes of deformation. The first mode results from local rearrangement of molecules, allowing
short-range

motion

long-range

motion

Fig. 1. A schematic of two modes of deformation in a gel consisting of a network of long polymers (lines) and a species of small molecules

(dots). The short-range motion locally rearranges the small molecules, so that the gel can change shape but not the volume. The long-range

motion does not conserve the number of small molecules locally, so that the gel can change both shape and volume.
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the gel to change shape but not volume. This mode of deformation occurs over a time scale that is independent
of the size of the sample. The local rearrangement is of the same kind as rearranging polymer chains during
large deformation of a dry elastomer, a process that gives rise to viscoelasticity. The second mode results from
long-range migration of the small molecules, allowing the gel to change both shape and volume. This mode of
deformation occurs over a time scale that becomes long when the sample is large. Both modes can give rise to
large deformation. This paper studies gels with polymer networks in a rubbery rather than glassy state, so that
the stretching of the polymer chains is a much faster process than migration of solvent molecules. For the
motion of solvent molecules, local rearrangement is much faster than long-range migration. In formulating the
theory, we will assume that local rearrangement is instantaneous, and model long-range migration as a time-
dependent process.

The plan of the paper is as follows. Section 2 outlines the nonequilibrium thermodynamic theory. We then
prescribe in Section 3 the free-energy function using the Flory–Huggins theory, and in Section 4 a kinetic law
assuming that the small molecules diffuse inside the gel. Section 5 discusses boundary conditions,
normalization, and dimensionless parameters. Section 6 analyzes a layer of a gel constrained in the transverse
directions, and subject to a weight in the normal direction. Section 7 discusses the scaling behavior of a gel
under a conical indenter.
2. A nonequilibrium thermodynamic theory

Following Gibbs (1878) and Biot (1941), and more directly Suo et al. (2007), Suo (2007), and Zhao et al.
(2007), this section presents a field theory of gels. Fig. 2 illustrates two ways of doing work. A weight applies a
force P, drops by a distance dl, and does work Pdl. A pump maintains the chemical potential m of the small
molecules, injects a number dM of the small molecules into the gel, and does work mdM. We will use the word
‘‘weight’’ as shorthand for any mechanism that applies an external force, and use the word ‘‘pump’’ as
shorthand for any mechanism that injects the small molecules. We next paraphrase these statements in terms
of field variables.

A gel is an aggregate of a three-dimensional network of long polymers and a species of small molecules. Imagine
that we attach to the network a field of markers. We take the dry network under no mechanical load as the
reference state, and name each marker using its coordinate X in the reference state. The external solvent is taken to
be in equilibrium by itself. To maintain a uniform description, we may as well place inside the external solvent an
imaginary network of vanishing elastic stiffness. Thus, volume integrals will extend over both the gel and the
external solvent, and surface integrals will extend over the area of all interfaces between the gel and the external
solvent. Let dV(X) be an element of volume, and NK ðXÞdAðXÞ be an element of an interface, where dA(X) is the
area of the element, and NK(X) is the unit vector normal to the interface between media labeled as � and +,
pointing toward medium+. We will measure both the volume element and the area element in the reference state.
pump

gel

Weight

P

�l

�M

�

Fig. 2. A mechanical load is applied by hanging a weight to the network. A chemical load is applied by using a pump to inject small

molecules into the gel.
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In the current state at time t, the marker Xmoves to a place with coordinate x(X,t). Denote the deformation
gradient by

FiK ¼
qxiðX; tÞ

qX K

. (1)

Imagine that we hang to each marker a weight, which applies an external force to the gel. In the current
state, let the force due to the weights on an element of volume be BðX; tÞdV ðXÞ, and on an element of an
interface be TðX; tÞdAðXÞ. Define the nominal stress siK(X,t) such thatZ

siK
qxi

qX K

dV ¼

Z
Bixi dV þ

Z
Tixi dA (2)

holds true for any test function xi(X).
The divergence theorem shows thatZ

siK

qxi

qX K

dV ¼

Z
ðs�iK � sþiK ÞNKxi dA�

Z
qsiK

qX K

xi dV . (3)

Across the interface, xi(X) is assumed to be continuous, but the stress need not be continuous. Insisting that
the defining equation (2) for the nominal stress holds true for any function xi(X), we find that the nominal
stress obeys that

qsiK ðX; tÞ

qX K

þ BiðX; tÞ ¼ 0 (4)

in the volume, and that

ðs�iK ðX; tÞ � sþiK ðX; tÞÞNK ðX; tÞ ¼ TiðX; tÞ (5)

on an interface. Eqs. (4) and (5) are familiar equations of force balance in continuum mechanics.
Imagine that we attach to every marker a pump, which injects the small molecules at the chemical potential

m(X,t) into the gel, in the vicinity of the marker. In the current state, let the number of the small molecules per
unit time injected into a volume element be rðX; tÞdV ðXÞ, and into an interface element be iðX; tÞdAðXÞ. The
small molecules also migrate in the gel. In the current state, let JK ðX; tÞNK dAðXÞ be the number of the small
molecules per unit time crossing an element of area, and CðX; tÞdV ðXÞ be the number of the small molecules in
a volume element. We assume that no chemical reaction occurs, so that the number of small molecules is
conserved, namely,

qCðX; tÞ

qt
þ

qJK ðX; tÞ

qX K

¼ rðX; tÞ (6)

in the volume, and

ðJþK ðX; tÞ � J�K ðX; tÞÞNK ðX; tÞ ¼ iðX; tÞ (7)

on an interface.
Multiplying both sides of Eq. (6) by an arbitrary test function z(X), integrating over the volume of the gel,

and applying the divergence theorem, we obtain thatZ
qC

qt
zdV ¼

Z
JK

qz
qX K

dV þ

Z
rzdV þ

Z
izdA: (8)

The conservation laws (6) and (7) are equivalent to requiring Eq. (8) to hold true for an arbitrary test function
z(X).

The field equations, (1), (4), (6), are linear differential equations. We next formulate the structure of material
laws, using the approach of nonequilibrium thermodynamics (e.g., Prigogine, 1967; Coleman and Noll, 1963).

When the markers displace at the velocity dx/dt, the field of weights does work at the rateR
Bidxi=dtdV þ

R
Tidxi=dtdA. As the field pumps inject the small molecules into the gel at the rates r and

i, the pumps do work at the rate
R
mrdV þ

R
mi dA. In the current state, let W dV(X) be the free energy in a

volume element. The free-energy density is taken to be a function of the deformation gradient and the nominal
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concentration, W(F,C). Associated with small changes, dFiK and dC, the free-energy density changes by

dW ¼
qW ðF;CÞ

qFiK

dFiK þ
qW ðF;CÞ

qC
dC. (9)

The gel, the field of weights, and the field of pumps together form a thermodynamic system. The free energy
of the system, G, is a sum of the free energy of the gel, and the potential energy of the weights and the pumps.
Consequently, associated with the changes, the free energy of the system changes at the rate

dG

dt
¼

Z
dW

dt
dV �

Z
Bi

dxi

dt
dV �

Z
Ti

dxi

dt
dA�

Z
mrdV �

Z
mi dA. (10)

This equation, together with Eqs. (2), (8), and (9), gives that

dG

dt
¼

Z
qW

qF iK

� siK

� �
dFiK

dt
dV þ

Z
qW

qC
� m

� �
rdV þ

Z
qW

qC
� m

� �
i dAþ

Z
JK

q
qX K

qW

qC

� �
dV .

(11)

Thermodynamics dictates that the free energy of the system should never increase, namely,

dG

dt
p0. (12)

This inequality must hold true for any arbitrary r, i, JK, and dxi/dt. Consequently, every individual integrand
in Eq. (11) must either be negative or should vanish. Each integral in Eq. (11) represents a distinct mechanism
of energy dissipation. The first integral is due to local rearrangement of the small molecules, the second and
third are due to the field of pumps injecting the small molecules, and the fourth is due to long-range migration
of the small molecules.

As discussed in the Introduction, the local rearrangement of molecules is a much faster process than long-
range migration. We will take the process of local rearrangement to be instantaneous. That is, we assume local
equilibrium by neglecting viscosity associated with local rearrangement of molecules. Consequently, the first
integrand in Eq. (11) vanishes, leading to

siK ¼
qW ðF;CÞ

qF iK

. (13)

We also assume local equilibrium between the small molecules in each pump and those in the gel in the vicinity
of the marker. Consequently, the second and the third integrands in Eq. (11) vanish, leading to

m ¼
qW ðF;CÞ

qC
. (14)

Under the local equilibrium assumptions, the stress equals the derivative of the free energy with respect to the
deformation gradient, and the chemical potential of the small molecules injected by the pump equals the free-
energy change associated with adding one small molecule to the vicinity of the marker. Once the free-energy
function W(F,C) is prescribed for a gel, Eqs. (13) and (14) give the equations of state.

We will model long-range migration of the small molecule as a time-dependent process. To ensure that
Eq. (12) holds true for any flux, we require that the fourth integrand in Eq. (11) be negative definite. One
common way to do this is to adopt a kinetic law

JK ¼ �MKL

qmðX; tÞ
qX L

, (15)

such that the mobility MKL is a symmetric and positive-definite tensor. The mobility tensor is a function of the
deformation gradient and concentration, MKL(F,C).

Both the free-energy function W(F,C) and the mobility tensor MKL(F,C) should remain invariant when the
entire system undergoes a rigid-body rotation in the current state. As is well established in continuum
mechanics, this statement of objectivity is equivalent to requiring that W(F,C) and MKL(F,C) depend on the
deformation gradient only through FiKFiM.
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When a gel is subject to a sudden change in mechanical load, which is then held constant subsequently, the
gel evolves over time. Two limiting states of the gel can be analyzed without invoking the kinetic law. In the
short-time limit, the solvent molecules inside the gel do not yet have time to redistribute, but the mechanical
equilibrium has already been established. Let C(X) be the known field of concentration at the time when the
load changes. The short-time limit is a state governed by the mechanical equilibrium equations (4) and (5) as
well as the equation of state (13). This boundary value problem is the same as the residual stress problem
in the theory of elasticity. The short-time limit corresponds to local rearrangement of molecules, as illustrated
in Fig. 1.

In the long-time limit, the gel has reached the equilibrium with both the mechanical load and the external
solvent. The free energy of the system has reached the minimum, so that dG/dt ¼ 0, and the last integrand in
Eq. (11) must also vanish. Consequently, the chemical potential m is homogeneous throughout the gel, and is
prescribed by the external solvent; see Section 5. The long-time limit is a state determined by Eqs. (4), (5), (13),
and (14). Because m is a known constant, one can solve C from Eq. (14) and insert C into Eq. (13). This
boundary value problem is again the same as the residual stress problem in the theory of elasticity.

3. Molecular incompressibility and the free-energy function of a model gel

Under most types of load, the long polymers and the small molecules can undergo large configurational
change without appreciable volumetric change. Following a common practice, we assume that the individual
long polymers and the individual small molecules are incompressible. Furthermore, the gel is a condensed
matter with negligible void space, so that we express the condition of molecular incompressibility as

1þ vC ¼ detðFÞ, (16)

where v is the volume per small molecule and vC is the volume of the small molecules in the gel divided by the
volume of the dry polymers.

The condition of molecular incompressibility can be enforced as a constraint by adding a term
R
Pð1þ

vC � detðFÞÞdV to the free energy G of the system, where P(X,t) is a field of Lagrange multiplier. Recall an
algebraic identity, qdetðFÞ=qFiK ¼ HiK detðFÞ; where HiK is the transpose of the inverse of the deformation
gradient, namely, HiKFiL ¼ dKL and HiKFjK ¼ dij. Consequently, Eqs. (13) and (14) become

siK ¼
qW ðF;CÞ

qF iK

�PHiK detðFÞ, (17)

m ¼
qW ðF;CÞ

qC
þPv. (18)

The small molecules can freely enter or leave the gel, but the long polymers are cross-linked into the network
and cannot leave the gel. The situation is analogous to that of a membrane permeable to the solvent but not to
the solute. If such a membrane separates a pure solvent and a solution, the solvent will diffuse across the
membrane until the solution builds up a pressure, known as the osmotic pressure. From Eq. (18), we can
interpret the Lagrange multiplier P as the osmotic pressure, which increases the chemical potential for the
solvent to enter the gel.

Recalling that the true stress relates to the nominal stress by sij ¼ siKF jK= detðFÞ, we rewrite Eq. (17) as

sij ¼
qW ðF;CÞ

qF iK

FjK

detðFÞ
�Pdij. (19)

The first term is the elastic stress due to stretching the network of the long polymers, while the second term is
the osmotic pressure. When the gel is subject to no weights, but is in equilibrium with the solvent, the stresses
vanish, sij ¼ 0. Under this condition, the elastic stress must balance the osmotic pressure. As the small
molecules migrate into the network, the osmotic pressure causes the gel to swell against the elastic stress.
Consequently, the osmosis pressure is also called the swelling stress. When the field in a gel is inhomogeneous,
the osmosis pressure P is also an inhomogeneous field, which can be solved as a part of an initial and
boundary problem.
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To solve initial and boundary value problems, we need an explicit form of the free-energy function, W(F,C).
Our intention is to illustrate the general procedure, and to describe approximate behavior of polymeric gels.
As such, we will adopt a simplest form of the free-energy function. To describe accurate behavior of a specific
gel would require adding terms and parameters to fit experimental data, a task that is beyond the scope of this
paper.

The free energy of a polymeric gel comes from two molecular processes: stretching the network of the
polymers and mixing the polymers and the small molecules. Following Flory and Rehner (1943), we assume
that the free energy of the gel takes the form

W ðF;CÞ ¼W sðFÞ þWmðCÞ, (20)

where Ws and Wm are the contributions from stretching and mixing, respectively.
Let l1, l2, and l3 be the three stretches. The free energy due to stretching a network of polymers is taken to

be (Flory, 1953)

W sðFÞ ¼
1
2
NkTðl21 þ l22 þ l23 � 3� 2 log l1l2l3Þ, (21)

where N is the number of polymer chains in the gel divided by the volume of the dry polymers and kT is the
temperature in the unit of energy. Other forms of the free energy of stretching are available and may be used to
fit experimental data. See reviews by Boyce and Arruda (2000), Marckmann and Verron (2006), and Horkay
and McKenna (2007).

When the long polymers are not cross-linked, the long polymers and the small molecules form a liquid
solution. The free energy of mixing is taken to be (Flory, 1942; Huggins, 1941)

WmðCÞ ¼ �
kT

v
vC log 1þ

1

vC

� �
þ

w
1þ vC

� �
. (22)

The first term inside the bracket comes from the entropy of mixing, and the second from the enthalpy of
mixing, where w is a dimensionless parameter. The enthalpy of mixing motivates the small molecules to enter
the gel if wo0, but motivates the small molecules to leave the gel if w40.

Let s1, s2, and s3 be the three principal nominal stresses. Eq. (17) is specialized to

s1 ¼ NkTðl1 � l�11 Þ �Pl2l3, (23a)

s2 ¼ NkTðl2 � l�12 Þ �Pl3l1, (23b)

s3 ¼ NkTðl3 � l�13 Þ �Pl1l2. (23c)

Eq. (18) is specialized to

m ¼ kT log
vC

1þ vC
þ

1

1þ vC
þ

w

ð1þ vCÞ2

� �
þPv. (24)

Eqs. (23) and (24) constitute the equations of state for the model gel.

4. Kinetic law

Following Biot (1941), much of the literature on poroelasticity has modeled the passage of a fluid in a
porous elastic solid by using Darcy’s law. Darcy’s law pictures a fluid flowing in pores inside the solid, with the
permeability being proportional to the square of the pore size. As a gel swells, the mesh size of the polymer
network changes substantially. Extending Darcy’s law for gels is a nontrivial task.

Tanaka et al. (1973) and Tanaka and Fillmore (1979) developed a kinetic theory by assuming that swelling
is rate-limited by the friction between the polymers and liquid. They modeled friction as a body force
proportional to the velocity of the network. This theory forbids the gel to deform quickly under a sudden
change in mechanical load. The theory has also not been coupled to large deformation.

As discussed in the Introduction, we will develop a kinetic law by assuming that the small molecules diffuse
in the gel. Diffusion has long been used to model phenomena such as creep in polycrystalline solids (Herring,
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1950), migration of atoms in elastic crystals (Larche and Cahn, 1985), and migration of small molecules in gels
(Buckley and Berger, 1962). As a simplest model, we assume that the coefficient of diffusion of the solvent
molecules, D, is isotropic and is independent of the deformation gradient F and the concentration C. This
simplification is reasonable for a swollen gel, in which the small molecules are the majority component.
Furthermore, the local behavior of a molecular group on a freely jointed long polymer chain is quite similar to
a small molecule. Let c(X,t) be the number of the small molecules per unit volume in the current state, ji(X,t)
be the number of the small molecules per unit time crossing per unit area in the current state, and m(X,t) be the
chemical potential. The flux relates to the gradient of the chemical potential by a well-known equation (e.g.,
Feynman et al., 1963)

ji ¼ �
cD

kT

qm
qxi

. (25)

Although written in terms of the true quantities, this equation is by no means an Eulerian description; rather,
it is an updated Lagrangian description, with c, ji, and m being quantities associated with the markers.

We next convert Eq. (25) into an expression using the nominal quantities, in the form of Eq. (15). The true
concentration relates to the nominal concentration as

c ¼
C

detðFÞ
. (26)

A material element of area is NK dA in the reference state and deforms to ni da in the current state. Recall an
identity, detðFÞNK dA ¼ F iK ni da. The number of molecules crossing the material element per unit time can be
written in two equivalent ways:

jini da ¼ JK NK dA. (27)

Consequently, the true flux relates to the nominal flux as

ji ¼
FiK

detðFÞ
JK . (28)

Using the chain rule of partial derivatives, we obtain that

qm
qX K

¼
qm
qxi

F iK . (29)

Comparing Eqs. (15) and (25), and invoking the condition of molecular incompressibility (16), we relate the
mobility tensor to the coefficient of diffusion:

MKL ¼
D

vkT
HiK HiL½detðFÞ � 1�. (30)

When deformation is large, the mobility tensor as defined using nominal quantities is anisotropic.
Just as the free-energy function introduced in the last section, the mobility tensor described in this section is

based on a specific assumption of material behavior. While the assumption that self-diffusion of solvent
molecules is a dominating kinetic process in the gel has its physical significance, it also has certain limitations.
For example, the assumption may fail when macroscopic flow or convection of solvent molecules prevails in
the gel. The domain of validity of self-diffusion dominated migration, as well as those of other mechanisms of
migration, should certainly be a focus of future studies, but is outside the scope of this paper.

5. Boundary conditions, normalizations, and dimensionless parameters

Outside the gel, the solvent is composed of a species of small molecules, either in a liquid or in a gaseous
state. The reference state of the solvent is set to be a liquid in equilibrium with its own vapor. Let p0 be the
vapor pressure, and p be the pressure in the solvent in the current state. In the current state, the chemical
potential of the small molecules in the external solvent, mext, is the change in the free energy associated with
relocating one small molecule from the reference state to the current state. If the solvent in the current state is
a gas (pop0), and is modeled as an ideal gas, the chemical potential is mext ¼ kT logðp=p0Þ. If the solvent in the
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current state is a liquid (p4p0), and the molecules are taken to be incompressible, the chemical potential is
mext ¼ vðp� p0Þx.

Consider a gel and an external liquid solvent both subject to a state of homogeneous hydrostatic stress.
Under the condition of molecular incompressibility, the volume of a small molecule does not change when it
relocates from the external liquid to the gel. Consequently, the homogeneous hydrostatic stress applied on
both the gel and the external liquid does not affect the thermodynamic state of the system. We should
emphasize that this conclusion only applies when the external solvent is liquid. If the external solvent is
gaseous, however, the hydrostatic stress does do work when a small molecule relocates from the gas to the gel.

For an initial value problem, we need to prescribe boundary conditions on an interface between a gel and a
solvent. The chemical boundary condition can be prescribed by giving the boundary value of either the flux i

or the chemical potential m. The mechanical boundary condition can be prescribed by giving the boundary
value of either the position x or the traction T.

We will normalize the chemical potential by kT and normalize the stresses by kT/v. A representative value of
the volume per molecule is v ¼ 10�28 m3. At room temperature, kT ¼ 4� 10�21 J and kT=v ¼ 4� 107 Pa.

The free-energy functions (21) and (22) introduce two dimensionless material parameters: Nv and w. In the
absence of small molecules, the cross-linked polymers have a shear modulus NkT under the small-strain
conditions, with the representative values NkT ¼ 104–107N/m2, which gives the range Nv ¼ 10�4–10�1. The
parameter w is a dimensionless measure of the enthalpy of mixing, with representative values w ¼ 0–1.2. For
applications that prefer gels with large swelling ratios, materials with low w values are used. In the numerical
examples below, we will take the values Nv ¼ 10�3 and w ¼ 0.2.

The theory does not have an intrinsic time scale or an intrinsic length scale. However, if a boundary value
problem has a length scale, say the characteristic size of the sample, L, the diffusion time scale is L2/D, which
we will use to normalize time. The coefficient of diffusion of a particle in a liquid relates to the viscosity of the
liquid by the Stokes–Einstein formula D ¼ kT/(6pRZ), where R is the radius of the particle. Although this
formula was derived for particles much larger than molecules, we will use the formula to estimate the order of
magnitude of the coefficient of self-diffusion. For example, for water at room temperature, taking
R ¼ 3� 10�10m and Z ¼ 0.89� 10�3 Pa s, we obtain that D ¼ 8� 10�10m2/s, an order of magnitude that is
comparable to the coefficient of diffusion of many different molecules in water. For a size scale L ¼ 10�3m,
we find that the time scale is L2/D ¼ 103 s.

6. Uniaxial creep

Fig. 3 sketches a layer of a gel immersed in a liquid solvent. The gel first swells without constraint to
equilibrate with the external solvent. The swollen gel is then bonded to a rigid substrate and, at time zero, a
weight is applied on the top surface of the gel via a permeable plate. The solvent molecules can diffuse out of
the gel through the plate, and the gel thins down gradually. This initial value problem was first analyzed by
Biot (1941) within his theory of linear poroelasticity, and is now analyzed within the nonlinear theory
developed in this paper.
Rigid substrate

gel
X3

X1

weight

solvent

permeable

plate

Fig. 3. A gel is bonded to a rigid substrate, immersed in a solvent, and subject to an applied weight via a plate permeable to the small

molecules.
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Let L be the thickness of the dry polymer, and s be the applied weight divided by the area of the dry
polymer. The chemical potential of the external solvent is set to be zero. The vapor pressure p0 is taken to be
small compared to s and is neglected in the following analysis. Let X1 and X2 be the material coordinates in
the plane of the layer, and X3 be the material coordinate normal to the layer and pointing downward. The
substrate keeps the lateral stretches l1 ¼ l2 constant. At time t, the marker X3 moves to a place x3(X3,t). The
vertical stretch is

l3ðX 3; tÞ ¼
qx3ðX 3; tÞ

qX 3
. (31)

The stretch is inhomogeneous and evolves with time.
We first consider the two limiting states. Setting s3 ¼ s in Eq. (23c) and m ¼ 0 in Eq. (24), and eliminating P,

we obtain that

sv

kT
¼ Nv l3 � l�13

� �
þ l21 log 1�

1

l3l
2
1

 !
þ

1

l3
þ

w

l23l
2
1

. (32)

When the gel swells under no constraint, s ¼ 0 and l1 ¼ l2 ¼ l3 Solving Eq. (32), we obtain the equilibrium
swelling ratio under no constraint, l1 ¼ l2 ¼ l3 ¼ 3.215. Subsequently, the gel is bonded to the rigid substrate,
which keeps l1 ¼ l2 ¼ 3.215 constant. Right after the weight is applied on the top of the gel, t ¼ 0+, the small
molecules do not have time to diffuse and the gel behaves like an incompressible elastic body. Since the lateral
stretches are held constant, the vertical stretch must also remain unchanged, l3(X3,0

+) ¼ 3.215. After a long
time, t-N, the gel establishes a new equilibrium with both the weight and the external liquid. The vertical
stretch l3(X3,N) can be obtained by solving Eq. (32) for any given value of stress s.

As time progresses, the stretch in the gel gradually changes from l3(X3,0
+) ¼ 3.215 to l3(X3,N), and

the change propagates from the surface toward deep inside the gel. We next analyze the evolution process.
Eq. (23c) is specialized to

s3ðX 3; tÞ ¼
qW s

ql3
� l21PðX 3; tÞ. (33)

Eq. (24) becomes

mðX 3; tÞ ¼
dWm

dC
þ vPðX 3; tÞ. (34)

The mechanical equilibrium equations (4) and (5) are satisfied if s3(X3,t) ¼ s throughout the gel. The chemical
potential, however, is inhomogeneous in the gel and evolves with time. The condition of molecular
incompressibility becomes

1þ vC ¼ l21l3. (35)

The kinetic law (15) is specialized to

JðX 3; tÞ ¼ �
Dðl21l3 � 1Þ

vkTl23

qmðX 3; tÞ

qX 3
. (36)

No pumps exist inside the gel, so that the conservation of solvent molecules is expressed as

qCðX 3tÞ

qt
¼ �

qJðX 3tÞ

qX 3
. (37)

Substituting Eqs. (33)–(36) into Eq. (37), we arrive at a partial differential equation for the function l3(X3,t):

ql3
qt
¼ D

q
qX 3

1�
1

l21l3

 !
1

ðl21l3 � 1Þl21l
3
3

�
2w

l41l
4
3

þ
Nv

l21l3
1þ

1

l23

 ! !
ql3
qX 3

" #
. (38)

The boundary conditions are as follows. On the surface of the gel, the small molecules in the external
solvent and in the gel exchange at a time scale mush shorter than the time needed for the small molecules to
migrate into the gel. Consequently, the chemical equilibrium is maintained at the surface at all times, namely,
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m(0,t) ¼ 0. Substituting this boundary condition into Eqs. (33) and (34) and eliminating P, we obtain that

l21 log 1�
1

l3l
2
1

 !
þ

1

l3l
2
1

þ
w

l23l
4
1

þ
Nv

l21
l3 �

1

l3

� �" #
X 3¼0

¼
sv

kT
. (39)

Because the in-plane stretch is held at the constant value, l1 ¼ 3.215, Eq. (39) is the nonlinear equation that
determines the boundary condition l3(0,t). The rigid substrate is taken to be impermeable to the solvent,
J(L,t) ¼ 0, giving another boundary condition

ql3ðL; tÞ
qX 3

¼ 0. (40)

The initial condition is

l3ðX 3; 0Þ ¼ 3:215. (41)

Observe that the initial condition (41) differs from the boundary condition determined from Eq. (39). Indeed,
such a discontinuity between the initial and boundary conditions is common in diffusion problems. The partial
differential equation is solved numerically.

Fig. 4 plots the function l3(X3,t) for a gel subject to a weight at the level sv/kT ¼ �0.05. Initially, the stretch
inside the gel is unperturbed and remains at the short-time limit. As time progresses, the stretch evolves from
the short-time limit to the long-time limit, and the change propagates gradually into the depth of the gel.

Fig. 5 plots the thickness of the gel as a function of time at several levels of the applied weight. The
horizontal axis is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tD=L2

q
. Initially, the stretch of the gel in the thickness direction coincides with that of free

swelling l/L ¼ 3.215. The rate process may be divided into two stages. When time is short, t5L2/D, only the
molecules near the top surface diffuse appreciably, so that the thickness of the gel, L, does not affect the rate of
diffusion. Consequently, the problem has no length scale, and the stretch l3(X3,t) evolves by a self-similar
profile (see below), so that the reduction in thickness scales linearly in

ffiffiffiffiffiffi
Dt
p

. When time is long, tbL2/D, the
thickness approaches a constant, corresponding to the long-time limit.

We now examine the self-similar solution for an infinitely thick layer. The initial value problem has no
length scale, so that the profile of the stretch must take the form

l3ðX 3; tÞ ¼ l3ðxÞ with x ¼ X 3=
ffiffiffiffiffiffi
Dt
p

. (42)
Fig. 4. A gel (Nv ¼ 10�3, w ¼ 0.2) is subject to a nominal stress vs/kT ¼ �0.05. The stretch l3 is inhomogeneous and evolves from the

short-time limit to the long-time limit. The surface of the gel (X3 ¼ 0) is taken to equilibrate with the solvent instantaneously, but the gel

beneath the surface equilibrates gradually.
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Fig. 5. The thickness of the gel as a function of time.

Fig. 6. The self-similar solution of an infinitely thick gel.
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Consequently, Eq. (38) becomes an ordinary differential equation:

1�
1

l21l3

 !
1

ðl21l3 � 1Þl21l
3
3

�
2w

l43l
4
1

þ
Nv

l3l
2
1

1þ
1

l23

 !" #
d2l3
dx2
þ

x
2

dl3
dx

þ �
4

l41l
5
3

þ 2w
4l21l3 � 5

l61l
6
3

þ
Nv

l41l
5
3

ð4� 3l21l3 þ 2l23 � l21l
3
3Þ

" #
dl3
dx

� �2

¼ 0. ð43Þ

This equation is integrated numerically. Fig. 6 plots the function l3(x) for several levels of the applied weight.
The layer may be divided into two regions by a diffusion front. Behind the front, the gel approaches the
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long-time limit. Ahead of the front, the gel approaches the short-time limit. The coordinate of the front scales
with

ffiffiffiffiffiffi
Dt
p

.
It can be shown that our theory reduces directly to the classical theory of linear poroelasticity, in a limiting

case of small deformation, while neglecting the free energy of mixing. Consequently, the calculation results
presented in the current section will also recover, in the same limiting case, the result of a similar initial value
problem by Biot (1941).
7. Scaling behavior of a gel under a conical indenter

Indentation has long been used to characterize materials. Following an approach of Cheng and Cheng
(1998), here we study the scaling behavior of a gel under a conical indenter. The gel is first equilibrated to a
solvent held at the chemical potential mext. A rigid indenter, of a conical shape with the half angle y, is then
indented vertically into the gel. Let P be the force applied to the indenter and h be the depth of the indentation.
If h is much smaller than the size of the gel, then h is the only length scale in the problem. Imagine that we
indent at time t ¼ 0 and hold the depth h constant. The force P will first jump to the short-time limit, and then
gradually relax to the long-time limit. Dimensional considerations dictate that

P ¼ h2 kT

v
f

t

h2=D

 !
. (44)

The dimensionless function f also depends on other dimensionless parameters in the problem, namely, the
material parameters Nv and w, the half angle y of the conical indenter, and the chemical potential of the
solvent mext/kT. These parameters, however, remain constant during indentation. Both the short-time limit
Pshort and the long-time limit Plong scale as h2kT/v. Fig. 7a sketches these parabolic scaling laws, Pshort / h2

and Plong / h2. A vertical line in Fig. 7a represents a relaxation experiment, in which the depth h is held
constant, while the force on the indenter decreases over time (Fig. 7b).
h

P
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im
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im
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ng
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e 
lim

it
creep

re
la

x
a
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P

Pshort

Plong

t 1/2
relax t

h

hlong

hshort

t 1/2
creep

Fig. 7. A conical indenter is suddenly pressed into the gel. (a) Both the long- and the short-time limits scale as Pph2. A relaxation

experiment corresponds to a vertical line, and a creep experiment corresponds to a horizontal line. (b) In a relaxation experiment, the

depth h is held constant, while the force P decreases over time. (c) In a creep experiment, the force P is held constant, while the depth h

increases over time.
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As indicated in Fig. 7b, we define a characteristic time for the relaxation experiment by the time needed for
the force to reduce to the mid-point, ðPshort þ PlongÞ=2. This characteristic time scales as

trelax1=2 ¼
h2

D
k, (45)

where the dimensionless factor k depends on the dimensionless parameters identified above.
One can also conduct a creep test by holding the force P constant, and record the depth h as a function of

time. A dimensional analysis of our theory shows that

h ¼

ffiffiffiffiffiffiffi
Pv

kT

r
F

t

Pv=kTD

� �
, (46)

where the dimensionless function F also depends on other dimensionless parameters identified above. The
short- and the long-time limits are still given by the two curves in Fig. 7a, where the creep test is indicated by
the horizontal line. Fig. 7c sketches the indentation depth as a function of time in the creep test, where the
characteristic time for the creep experiment is defined by the time needed for the depth to increase to the mid-
point, (hshort/hlong)/2. This characteristic time scales as

t
creep
1=2 ¼

Pv

kTD
K , (47)

where the dimensionless factor K depends on the dimensionless parameters identified above.

8. Concluding remarks

We have presented a theory of coupled molecular migration and large deformation within the framework of
nonequilibrium thermodynamics. All fields are given as functions of the material coordinates, so that the
domain of the problem remains unchanged as time increases. The theory consists of linear differential
equations corresponding to force balance and conservation of the number of molecules. Nonlinearity is
introduced in material-specific functions: the free-energy function W(F,C) and the mobility tensor MKL(F,C).
They can be related to experimental data and to molecular theories. In particular, we have developed a kinetic
law by assuming that the small molecules diffuse in the gel. Basic solutions, such as a layer of a gel under a
weight, and a block of a gel under a conical indenter, will be useful to characterize materials.
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