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a b s t r a c t

Immersed in an ionic solution, a network of polyelectrolytes imbibes the solution and

swells, resulting in a polyelectrolyte gel. The swelling is reversible, and the amount of

swelling is regulated by ionic concentrations, mechanical forces, and electric potentials.

This paper develops a field theory to couple large deformation and electrochemistry. A

specific material model is described, including the effects of stretching the network,

mixing the polymers with the solvent and ions, and polarizing the gel. We show that the

notion of osmotic pressure in a gel has no experimental significance in general, but

acquires a physical interpretation within the specific material model. The theory is used

to analyze several phenomena: a gel swells freely in an ionic solution, a gel swells under

a constraint of a substrate, electric double layer at the interface between the gel and the

external solution, and swelling of a gel of a small size.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many natural and synthetic macromolecules are polyelectrolytes, long-chained polymers that contain ionizable groups
(Fig. 1). When such a polymer is in a solution, the ionizable groups dissociate into fixed charges bonded to the polymer and
ions mobile in the solution. The solution consists of solvent molecules of a low molecular weight (e.g., water molecules), as
well as ions of two types: counterions that bear charges of the sign opposite to the fixed charges, and co-ions that bear
charges of the same sign as the fixed charges.

A large number of flexible polyelectrolytes can form a three-dimensional network by covalent crosslinks. When
immersed in the solution, the network imbibes the solution and swells, resulting in a polyelectrolyte gel. The volume of the
gel is typically many times the volume of the dry network. The swelling is reversible, and the amount of the swelling can be
regulated by ionic concentrations, mechanical forces, and electric potentials.

Most tissues of plants and animals contain polyelectrolytes (Melody and Mark, 2007). For example, pectin, which has
long been used to make jellies and jams, is a polyelectrolyte gel in cell walls of plants. The flow of water in plants is
regulated by reversible swelling and shrinking of pectin in response to changes in ionic concentration (Zwieniecki et al.,
2001). As another example, articular cartilage consists of collagen fibers and synovial fluid, where ions are essential to
maintain low friction in joints (Gong and Osada, 2002). Perhaps the best known synthetic polyelectrolyte gels are those
used in superabsorbent disposable diapers (Odio and Friedlander, 2000) and ion exchangers (Helfferich, 1962). Recent
applications of polyelectrolyte gels include drug delivery (Duncan, 2003), tissue engineering (Lee and Mooney, 2001), and
soft actuators (Beebe et al., 2000; Dong et al., 2006; Sidorenko, et al., 2007; Hong et al., 2008a). A large number of
biomedical applications of soft active materials are reviewed in the text edited by Carpi and Smela (2009). In many of these
ll rights reserved.
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Fig. 1. Flexible, long-chained polyelectrolyte polymers are crosslinked by covalent bonds into a three-dimensional network. The network imbibes a

solution and swells, resulting in a polyelectrolyte gel. The ionizable groups on the polymers dissociate, so that the polymers carry fixed charges. The

counterions and the co-ions, as well as solvent molecules, are mobile and can cross the interface between the gel and the external solution.
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applications, gels serve as transducers that convert between changes in mechanical variables (i.e., forces and
displacements) and in physiological variables (e.g., slat concentrations, pH, and temperature).

The object of this paper is to develop a field theory of polyelectrolyte gels to couple large deformation and
electrochemistry. Recent applications of polyelectrolyte gels have called into attention two aspects of behavior. First,
because a gel swells by imbibing solvent molecules, the time to equilibrate is short when the gel has a small size (Ballauff
and Lu, 2007; Hirose et al., 1987; Nayak and Lyon, 2005; Pelton, 2000; Saunders and Vincent, 1999). When the size of the
gel is comparable to the Debye length (Hoogeveen et al., 1996; Zhou and Chu, 1998), assumption of electroneutrality
should be re-examined. Second, in applications a gel is often integrated with hard materials, leading to a hybrid structure
of soft and hard materials. The hard materials constrain the swelling of the gels, often leading to inhomogeneous
deformation even when the gel has reached equilibrium (Zhao et al., 2008; Hong et al., 2009). Constrained swelling also
induces in the gel a field of stress, which may damage the gel.

A field theory describes a swelling gel in terms of thermodynamics and kinetics. The thermodynamics of swelling dates
back to Gibbs (1878), who characterized the state of an element of a swollen solid using the gradient of displacement and
the concentration of fluid, deduced the conditions of equilibrium in terms of the nominal stress and the chemical potential,
and represented the behavior of materials using a free-energy function. Gibbs, however, did not give any explicit form of
the free-energy function. Flory and Rehner (1943) provided a free-energy function for polymeric gels by combining the
entropy of stretching the polymer network and the entropy of mixing the polymers with the solvent. Once a free-energy
function is specified, the Gibbs theory leads to a boundary-value problem that governs the fields of the deformation of the
network and the concentration of the solvent in a gel in equilibrium with external forces and solvent. A growing number of
such boundary-value problems have been solved, as reviewed by Hong et al. (2009).

The kinetics of swelling also has a long history. Biot (1941) used Darcy’s law to model the migration of a fluid in a
porous elastic solid. The resulting theory, known as poroelasticity, has been used to analyze phenomena ranging from
compaction of soils to deformation of tissues. Larche and Cahn (1985) formulated an analogous theory for diffusion of
atoms in an elastic crystal. The literature has been updated by, among others, Rice and Cleary (1976), Scherer (1989),
Sekimoto (1991), Durning and Morman (1993), Govindjee and Simo (1993), Dolbow et al. (2004), Hui and Muralidharan
(2005), Hong et al. (2008b).

Field theories have been formulated specifically for polyelectrolyte gels. Lai et al. (1991) proposed a triphasic theory,
where the network, the solvent and the ions are treated as distinct phases with individual velocity fields; for recent
developments along this line, see Ateshian et al. (2004), Li et al. (2007), and Del Bufalo et al. (2008). Alternatively, following
Gibbs and Biot, one can regard a gel as a single phase, characterized by fields of deformation gradient and composition; for
developments along this line see Nemat-Nasser and Li (2000), Xiao and Bhattacharya (2001), De et al. (2002), Baek and
Srinivasa (2004), and Swaminathan et al. (2007).

While qualitative principles of the swelling of polyelectrolyte gels have long been understood (e.g., Helfferich, 1962),
quantitative representations of these principles have been evolving, as manifested in works cited above. Given that many
forms of the theory exist in the literature, with varying notations, assumptions, and degrees of generality, we and many
other authors have found it necessary to examine the theory with care, before analyzing specific phenomena. In particular,
following a tradition in continuum mechanics, we find it desirable to organize the theory into parts specified by general
principles, and parts specific to individual materials. Such a modularized theory will aid the progress in linking diverse
macroscopic phenomena to microscopic processes of the network, solvent and ions.

Along a related line of research, recently we and others have re-formulated the field theory of elastic dielectrics
(Dorfmann and Ogden, 2005; McMeeking and Landis, 2005; Suo et al., 2008). A feature of the new formulation is that the
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effect of electric field on deformation is no longer introduced as the Maxwell stress, but as a part of a material model. This
approach allows the theory to readily include more complex electromechanical interactions (Zhao et al., 2007; Zhao and
Suo, 2008).

This paper develops a theory of polyelectrolyte gels by building upon our previous works on elastic dielectrics (Suo
et al., 2008) and neutral gels (Hong et al., 2008b). The behavior of polyelectrolyte gels, however, differs substantially from
elastomers and neutral gels. The difference originates from the presence of the fixed charges and mobile ions in
polyelectrolyte gels. The electroneutrality inside the gel requires that the fixed charges retain counterions, which
substantially increase the amount of swelling due to osmosis. The presence of mobile ions gives rise to a length scale in the
theory, the Debye length. Following Gibbs and Biot, we represent a polyelectrolyte gel as a single phase. To account for the
coupling between the deformation of the network and the migration of the ions and the solvent, we invoke the procedure
of nonequilibrium thermodynamics. This procedure makes it evident that parts of the theory are specified by general
principles such as the laws of thermodynamics and conservation (Sections 2–4), and parts of the theory are specified by
special considerations such as models of solution, network and polarization (Sections 5 and 6). In particular, following
Flory and Rehner (1943), we assume that the degree of crosslinks is low, such that the free energy of a gel may be
approximated by a superposition of that of the network and that of the solution. From this material model the osmotic
pressure and Maxwell stress emerge naturally.

Sections 7–11 apply the theory to analyze several phenomena (Fig. 2). The phenomena are selected to highlight the
significant differences of polyelectrolyte gels from elastomers and neutral gels. When a polyelectrolyte gel swells freely in
a solution, the amount of swelling is affected by diverse factors, including the density of crosslinks, the concentration of the
fixed charges, and the ionic strength of the external solution. When constrained by hard materials, a swelling gel pushes
against the constraint. How various factors affect the blocking force is of central significance to the design of transducers.
Near an interface between the gel and the external solution, electroneutrality is no longer maintained. For example, when a
gel with negative fixed charges is immersed in a dilute ionic solution, the counterions released from the polymers will spill
into the external solution. Consequently, near the interface the gel is negatively charged, while the external solution is
positively charged. The positive and the negative charges on the two sides of the interface form an electrical double layer.
The electroneutrality is recovered inside the gel and the external solution at a distance larger than the Debye length. When
the size of a gel is comparable to, or smaller than, the Debye length, the behavior of the gel may deviate from that of the gel
of a large size. We explore the size effects by analyzing a thin layer of a gel immersed in a solution. The effects of the
electric double layer in a swelling gel.
gel gel 
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Fig. 2. Phenomena to be studied. (a) A gel swells freely in an ionic solution. (b) A disk of a gel swells freely in the radial direction, but is constrained in the

thickness direction. (c) An electric double layer forms at the interface between a gel and an external solution. (d) A thin layer of a gel swells in an ionic

solution.
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2. Three ways of doing work to a polyelectrolyte gel

Sections 2–4 refine a note posted online (Suo, 2007) and describe parts of the theory specified by general principles. The gel
moves in a three-dimensional space, in which places are identified by a set of coordinates. We will use the undeformed dry
network as a reference state (Fig. 3). An element of the network occupies a place with coordinate X when the network is in the
reference state, and moves to a place with coordinate x when the network is in the current state at time t. The function

x¼ xðX; tÞ: ð2:1Þ

describes the history of the deformation of the network.
Both the gel and the external solution are included in the domain under consideration. In the reference state, let dV(X)

be an element of volume, dA(X) be an element of an interface, and NK(X) be the unit vector normal to the element of the
interface between media labeled as – and +, pointing toward medium +.

Also illustrated in Fig. 3 are three ways in which external agents do work. We will use the word ‘‘weight’’ as shorthand
for any external agent that applies a mechanical force to the network. Imagine that every element of the network is
attached with a weight. The field of weights applies a field of forces to the gel. In the current state, let the forces due to the
weights be B(X,t)dV(X) on an element of volume, and be T(X,t)dA(X) on an element of interface. When the network deforms
by dxi, the field of weights do workZ

BidxidVþ

Z
TidxidA: ð2:2Þ

The gel is taken to be an ionic conductor, but an electronic insulator. Imagine that every element of the network is
attached with an electrode, and that electrodes of neighboring elements are electrically insulated from one another. We
will use the word ‘‘battery’’ as shorthand for any external agent that brings electrons to an electrode from the ground
through an electronic conductor outside the gel. The battery maintains the electric potential F of the electrode relative to
the ground. The field of batteries prescribes a time-dependent field of the electric potential:

F¼FðX; tÞ: ð2:3Þ

The field of electrodes bears excess electrons. In the current state at time t, let the electronic charges be q(X,t)dV(X) on
an element of volume of the network, and o(X,t)dA(X) on an element of interface of the network. When small amounts of
electrons, dqdV and dodA, are brought to the field of electrodes, the field of batteries do workZ

FdqdVþ

Z
FdodA: ð2:4Þ
reference state

dry
polymer

current state
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Fig. 3. (a) The reference state is a network of dry polymers. Each element of the network is identified by its coordinate X when the network is in the

reference state. (b) In the current state at time t, the element X occupies a place of coordinate x, and external agents do work to the gel in three ways:

mechanical work is done through the movements of a field of weights, electrical work is done as electrons flow from the ground into the gel through a

field of batteries, and electrochemical work is done as solvent molecules and ions flow from external sources into the gel through a field of pumps.
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In practice, many parts of the gel are not attached with electrodes and batteries, and are kept in the open-circuit
condition. These parts of the gel have no excess electrons, because we have assumed that the gel itself is an electronic
insulator. In formulating the theory, however, it is equivalent to imagine that every element of the network is attached
with an electrode and a battery, and ask what the electric potential of the battery needs to be to keep the electrode charge-
free.

We will use the word ‘‘pump’’ as shorthand for any external agent that injects mobile particles (i.e., solvent molecules
or ions) into the gel. Imagine that every element of the network is attached with a pump, and let ma be the electrochemical
potential of species a in the pump. The field of pumps prescribes a time-dependent field of the electrochemical potential of
every mobile species:

ma ¼ maðX; tÞ: ð2:5Þ

Let t0 be a fixed time. In the time period from t0 to the current time t, the pumps inject a total of ra(X,t)dV(X) number of
particles of species a into an element of volume, and a total of ia(X,t)dA(X) number of particles of species a into an element
of interface. When small amounts of mobile species, dradV and diadA, are injected into the gel, the field of pumps do workXZ

madradVþ
XZ

madiadA: ð2:6Þ

Unless otherwise stated, the sign of summation in this paper implies a sum taken over all mobile species, including both
the solvent and ions.

In practice, many parts of the gel are not attached with pumps. In these parts of the gel, mobile species of ions and
molecules are not injected from pumps, but migrate to and from neighboring parts of the gel. In formulating the theory,
however, it is equivalent to imagine that every element of the network is attached with a pump, and ask what the
electrochemical potential of every species in the pump needs to be for not injecting any particles.

3. Free-energy density as a function of field variables

We will focus on isothermal processes, and drop the temperature from the list of variables to be considered. Let WdV be
the Helmholtz free energy of an element of volume when the gel is in the current state. We will neglect the free energy of
the interface. The Helmholtz free energy of the gel is an integral of the free-energy density over the volume of the gel,
namely,

R
WdV . Following a common practice in formulating field theories, we take this representation to mean that the

gel consists of many small volumes, the free energy of the gel is the sum of the free energy of the small volumes, and the
field in each small volume is homogeneous in terms of a set of field variables. The choice of the field variables, as well as
the functional form of the free-energy density, constitutes a material model. Commonly used field variables are recalled
below.

In the current state at time t, the element of the network X occupies the place x. The deformation gradient is defined as

FiK ðX; tÞ ¼
@xiðX; tÞ

@XK
: ð3:1Þ

The deformation gradient is used as a variable in the free-energy function to model the contractility of the network. The
free energy is invariant if the gel rotates as a rigid body. Following a well known result of continuum mechanics, we require
that W depend on F only through the product FiKFiL, known as the Green deformation tensor.

The number of particles in each mobile species may not be conserved in practice. For example, at the interface between
an electrode and a solution, ions may gain or lose electrons to become a neutral particle. As another example, an acidic
group on a polymer chain may dissociate into a fixed charge and a proton, and the fraction of the acidic group dissociated
depends on the pH of the solution. While these effects are significant and can be included in the theory, to limit the scope
of discussion, we assume in this paper that no chemical reaction occurs, so that the number of particles in each species is
conserved. In the current state at time t, let Ca(X,t)dV be the number of particles of species a in an element of volume. From
a fixed time t0 to the current time t, a total number Ia

K ðX; tÞNK dA of particles of species a crosses an element of area. The
conservation of the number of particles in species a requires that

CaðX; tÞ�CaðX; t0Þþ
@Ia

K ðX; tÞ

@XK
¼ raðX; tÞ: ð3:2Þ

in the volume, and that

NK ½I
a
K ðX; tÞ�

þ�NK ½I
a
K ðX; tÞ�

� ¼ ia: ð3:3Þ

on an interface. Eqs. (3.2) and (3.3) hold for every mobile species in the gel. The superscript - signifies the value of a
quantity in medium � and near the interface, and the superscript + signifies the value of a quantity in medium + and near
the interface.

Let Q(X,t)dV(X) be the total electric charge on an element of volume. The total electric charge is contributed from
electrons, ions, and fixed charges. Thus,

Q ¼ qþ
X

ezaCaþz0C0: ð3:4Þ
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where z0 is the valence of the fixed charge, C0 is the concentration of the fixed charges, e is the elementary charge, and za is
the valence of species a, with the valence being zero for a neutral mobile species. Eq. (3.3) has stipulated that the ions
injected from the pumps into the interface totally migrate into the two phases. Thus, the interfacial charge has its
contribution only from the electrons, and o(X,t)dA(X) is the total electric charge on an element of interface.

Gauss’s law can be expressed in terms of the nominal fields (e.g., Dorfmann and Ogden, 2005; Suo et al., 2008). The
nominal electric displacement ~DK ðX; tÞ satisfies the following equations:

@ ~DK ðX; tÞ

@XK
¼Q ðX; tÞ: ð3:5Þ

in the volume, and

NK
~D
þ

K ðX; tÞ�NK
~D
�

K ðX; tÞ ¼oðX; tÞ: ð3:6Þ

on an interface.
As a part of the specification of a material model, the free-energy density, W, is assumed to be a function of the

deformation gradient, the nominal electric displacement, and the composition, namely,

W ¼WðF; ~D;C1;C2; . . .Þ: ð3:7Þ

Associated with small changes in the independent variables, the free-energy density changes by

dW ¼
@W

@FiK
dFiKþ

@W

@ ~DK

d ~DKþ
X @W

@Ca
dCa: ð3:8Þ

The significance of the partial derivatives is interpreted in the next section.

4. Equilibrating a gel with weights, batteries and pumps

The gel, weights, batteries and pumps together constitute a thermodynamic system. The system is held at a fixed
temperature by being in thermal equilibrium with a reservoir of energy. The system exchanges energy with the rest of the
world, but nothing else. The Helmholtz free energy of the system is the sum over the parts: the change in the free energy of
the gel is

R
dWdV , and the change in the free energy of the weights, or batteries, or pumps is the negative amounts of the

work listed in Section 2. While the system is in thermal equilibrium with the reservoir of energy, the system may still be
not in mechanical, electrostatic or electrochemical equilibrium. Thermodynamics dictates that the Helmholtz free energy
of the system should never increase:

Z
dWdV�

Z
BidxidV�

Z
TidxidA �

Z
FdqdV�

Z
FdodA �

XZ
madradV�

XZ
madiadAr0: ð4:1Þ

For this statement to be meaningful, d( ) stands for the value of a quantity in the current state minus the value of the
quantity in a state a short time before. The inequality holds when the system is not in equilibrium, and the equality holds
when the system is in equilibrium.

Using (3.1)–(3.8) and applying the divergence theorem, we rewrite (4.1) as

�

Z
@

@XK

@W

@FiK

� �
þBi

� �
dxidV�

Z
NK

@W

@FiK

� �þ
�NK

@W

@FiK

� ��
þTi

� �
dxidAþ

Z
@W

@ ~DK

þ
@F
@XK

� �
d ~DK dV

þ
XZ

@W

@Ca
þezaF�ma

� �
dradVþ

XZ
@W

@Ca
þezaF�ma

� �þ
NKdðIa

K Þ
þdA�

XZ
@W

@Ca
þezaF�ma

� ��
NKdðIa

K Þ
�dA

þ
XZ

@

@XK

@W

@Ca
þezaF

� �
dIa

K dV r0: ð4:2Þ

Each line of (4.2) accounts for the contribution to the change in the Helmholtz free energy of the system made by a
distinct process: the first line is due to the deformation of the network, the second due to the redistribution of electric
charges, the third due to the injection of mobile species to the gel, the fourth due to the injection of mobile species from the
interface into the two phases, the fifth due to the migration of mobile species within the gel.

The rate of swelling is usually limited by the migration of mobile species, so that the first four lines in (4.2) are assumed
to vanish, giving rise to equalities, while the fifth line remains negative. The equalities are conditions of partial
thermodynamic equilibrium with respect to distinct processes: mechanical equilibrium with respect to the deformation of
the network, electrostatic equilibrium with respect to the distribution of charges, and electrochemical equilibrium with
respect to the injection of mobile species. We next discuss these conditions of partial equilibrium one by one.

Define the nominal stress by

siK ¼
@WðF; ~D;C1;C2; . . .Þ

@FiK
: ð4:3Þ
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To ensure that the first line in (4.2) vanishes for arbitrary field of displacement, dx, we obtain that

@siK ðX; tÞ

@XK
þBiðX; tÞ ¼ 0: ð4:4Þ

in the volume, and

NK s�iK ðX; tÞ�NK sþiK ðX; tÞ ¼ TiðX; tÞ: ð4:5Þ

on interfaces. In continuum mechanics, (4.4) and (4.5) are usually derived by balancing forces acting on a small volume or a
small area. As reviewed by Suo et al. (2008), such a derivation has been open to the criticism as to why only forces due to
weights need be balanced by stresses, and not the forces due to electrostatic interaction. The derivation presented here
makes it evident that (4.4) and (4.5) are the conditions of mechanical equilibrium, i.e., partial thermodynamic equilibrium
associated with the field of displacement.

Define the nominal electric field by

~EK ¼
@WðF; ~D;C1;C2; . . .Þ

@ ~DK

: ð4:6Þ

To ensure that the second line in (4.2) vanishes for arbitrary variation in the field of electric displacement, we obtain
that

~EK ðX; tÞ ¼�
@FðX; tÞ
@XK

: ð4:7Þ

The negative sign conforms to the convention that the electric field points from an element with a high electric
potential to an element of a low electric potential. Eqs. (4.6) and (4.7) constitute the conditions of electrostatic equilibrium.

To ensure that the third and fourth lines in (4.2) vanish for arbitrary small injection of mobile species, we obtain that

ma ¼ ezaFþ
@WðF; ~D;C1;C2; . . .Þ

@Ca
: ð4:8Þ

This set of equations constitutes the conditions of equilibrium for each mobile species in the pump and in the gel. Eq.
(4.8) recovers a similar one derived by Gibbs (1878).

Once the above conditions of partial equilibrium are satisfied, only the last line in (4.2) remains and the inequality
reduces to

X @ma

@XK
dIa

K o0: ð4:9Þ

for arbitrary non-vanishing fluxes of mobile species in the gel. A common way to enforce this inequality is to assume that
the flux Ja

K ðX; tÞ ¼ @Ia
K ðX; tÞ=@t is linear in the gradients of the electrochemical potential, with a negative-definite matrix of

the linear transformation.
In the remainder of this paper, we will only consider states of equilibrium, in which the electrochemical potential of

each mobile species is uniform throughout the gel and the external solution, namely,

ma ¼ constant: ð4:10Þ

This equation is the condition of electrochemical equilibrium.
The theoretical framework described above are generally applicable to the gel as well as the external solution, with the

exception that the deformation field x(X,t) has no physical significance in a fluid where a network is absent. The free
energy of a liquid solution is no longer a function of the deformation gradient F, while all expressions written in terms of
true quantities remain valid.

5. Incompressibility of individual constituents

As the final step to construct a material model, Sections 5 and 6 consider a free-energy function of a specific form. The
thermodynamics of polyelectrolyte gels have been studied by, among others, Flory (1953), Katchalsky (1971), Skouri et al.
(1995), Rubinstein et al. (1996), and English et al. (1996). Here we do not intend to construct a free-energy function to
describe a real gel accurately. Rather, we will construct a free-energy function of an idealized gel to analyze basic
phenomena of polyelectrolyte gels, such as those illustrated in Fig. 2.

Because typically the stress in a gel is small and the swelling ratio is large, we assume that individual polymers and
mobile particles are incompressible. The ionizable groups on the polymers are taken to be fully dissociated. In the
reference state the volume is taken by the dissociated polymers. Imagine a unit volume of the dry network imbibes C1, C2,
y numbers of particles and swells to a gel of volume det . The mobile particles have the total volume

P
vaCa, where va is

the volume per particle of species a, and is taken to be a constant. Because all the constituents are assumed to be
incompressible, the sum of the volume of the dry polymers and that of the mobile species equals the volume of the gel:

1þ
X

vaCa ¼ det F: ð5:1Þ
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Consequently, the incompressibility of the constituents places a constraint between the concentrations of mobile
species and the deformation of the network.

The consequence of the constraint (5.1) is studied next. In deriving (4.3) and (4.8), we have assumed that the
concentrations of the mobile species and the deformation of the network are independent variables. To modify (4.3) and
(4.8), following Hong et al. (2008b), we enforce the constraint by replacing the free-energy density W with

WþPð1þ
X

vaCa�detFÞ: ð5:2Þ

Here P(X,t) is a field of Lagrange multiplier. Replacing W in (4.2) with (5.2), we find that (4.3) becomes

siK ¼
@WðF; ~D;C1;C2; . . .Þ

@FiK
�PHiK det F: ð5:3Þ

and that (4.8) becomes

ma ¼ ezaFþ
@WðF; ~D;C1;C2; . . .Þ

@Ca
þPva: ð5:4Þ

In taking partial derivatives in (5.3) and (5.4), we have regarded the concentrations and the deformation gradient as
independent variables, and used a mathematical identity

@det F

@FiK
¼HiKdet F: ð5:5Þ

where FiKHjK=dij and FiKHiL=dKL.
The Lagrange multiplier P may be interpreted as osmotic pressure. For example, (5.4) may be interpreted as follows.

When a gel equilibrates with an external solution, the two phases must equalize the electrochemical potential of each
mobile species, (4.10). Typically, the two phases have different values of the electric potential F, as well as different values
of @W/@Ca. Such differences must be compensated for by different values of the osmotic pressure P in the two phases.

The above interpretation is also consistent with (5.3). It is well known in continuum mechanics that the nominal stress
siK relates to the true stress sij as

sij ¼
siK FjK

det F
: ð5:6Þ

Combining (5.3) and (5.6), we obtain an expression for the true stress

sij ¼
@W

@FiK

� �
FjK

det F
�Pdij: ð5:7Þ

In this expression, the first term results from the contractility of the network, and the second term results from the
osmotic pressure. When the gel swells freely under no external stress, si=0 , the osmotic pressure counteracts the
contractile stress.

In general, when the gel swells under mechanical constraint, the deformation in the gel is inhomogeneous even when
the gel has reached equilibrium. In such a general case, the osmotic pressure in the gel is also inhomogeneous, and should
be determined as a part of the solution to the boundary-value problem.

Even when the deformation is homogeneous and isotropic, the osmotic pressure in the gel is not well defined. The
constraint (5.1) will allow us to write the function WðF; ~D;C1;C2; . . .Þ in many forms. For example, using (5.1) we can
express C1 in terms of the concentrations of other mobile species and det F, and then use this expression to substitute C1

appeared in some terms in the function WðF; ~D;C1;C2; . . .Þ, but not other terms. The choice of the terms to be replaced is
arbitrary. Subsequently, we regard all variables of W as independent and calculate electrochemical potential from (5.4) or
stress from (5.7). Because the electrochemical potential and stress are quantities set by external agents, and are not
modified by this partial substitution of a variable, the quantity P must be modified accordingly.

This ambiguity in defining the osmotic pressure in a gel also has an experimental consequence: the osmotic pressure in
a gel is not a measurable quantity. With reference to (5.7), the stress sij applied on a uniform gel can be measured in
experiments, but no experiments can be devised to measure the contractile stress and the osmotic pressure separately.
That is, dividing the stress into contractile stress and osmotic pressure in general has no empirical significance, and is a
mathematical artifact. Such a division, however, does have a specific physical interpretation in a class of models described
in the next section.

6. An explicit form of the free-energy function

A large number of models describe liquid mixtures of uncrosslinked polymers and solvent molecules. Also a large
number of models describe the elasticity of crosslinked polymers. In many gels, the density of the crosslinks is so low that,
to a good approximation, the effect of crosslinks on mixing may be neglected, and one simply writes the free energy of a gel
as the sum of the free energy of the network and that of the solution. The best known model of this kind is due to Flory and
Rehner (1943) for neutral gels, where the free energy of a gel is assumed to result from two molecular processes: stretching
the network of the polymers, and mixing the polymers and the solvent molecules.
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When a liquid mixture is separated from a pure solvent by a membrane permeable to the solvent but not to the solute,
solvent may cross the membrane to dilute the liquid mixture. This process will continue unless the mixture is subject to a
pressure, known as the osmotic pressure. The osmotic pressure can be measured experimentally. The difference between a
liquid mixture and a gel is that in the latter polymers are crosslinked. The crosslinks serve the function of the semi-
permeable membrane: the solvent can enter the gel, but the polymers cannot leave the gel. As the solvent molecules enter
the gel, the network expands. The solvent and the gel equilibrate when osmosis counteracts contractility of the network.

So long as the density of the crosslinks is low enough, and the crosslinks affect the behavior of the individual molecules
in the mixture negligibly, we may assume that the osmotic pressure in the gel is the same as that in the liquid mixture. This
assumption is tacitly made in nearly entire literature on polymeric gels. The assumption is clearly invalid if the density of
the crosslinks is high enough to modify the behavior of the individual molecules in the mixture, in which case, the osmotic
pressure is a nebulous notion and cannot be unambiguously separated from contractile stress.

The Flory–Rehner approach has been extended to polyelectrolyte gels (e.g., Ricka and Tanaka, 1984; Hooper et al., 1990;
Brannon-Peppas and Peppas, 1991). We further extend this approach by adding a term due to polarization. Specifically, we
write the free-energy density of the gel as a sum:

W ¼WnetþWsolþWionþWpol; ð6:1Þ

where Wrest, Wsol, Wion and Wpol are the contributions from stretching the network, mixing the polymers and the solvent,
mixing the solvent and ions, and polarizing the gel. We next describe these contributions one by one.

The free energy of stretching the polymer network is taken to be (e.g., Flory, 1953)

Wnet ¼
1

2
NkTðFiK FiK�3�2logðdet FÞÞ: ð6:2Þ

where N is the number of polymer chains divided by the volume of the dry polymer, and kT is the temperature in the unit
of energy. This free energy assumes that contractility of the network is entirely due to the reduction in the entropy caused
by stretching the polymer chains, and the configurations of the polymer chains obey the Gaussian statistics. When the
deformation does not change volume, det F=1, this model recovers the neo-Hookean model. For a swelling gel, of cause, the
change in volume is large, det Fc1.

The free energy of mixing the polymers and the solvent takes the form (Flory, 1942; Huggins, 1942):

Wsol ¼
kT

us
usCslog

usCs

1þ usCs
�

w
1þ usCs

� �
; ð6:3Þ

where Cs is the nominal concentration of the solvent in the gel, and vs the volume per solvent molecule. The volume of a
swollen gel is predominantly occupied by the solvent molecules, so that vsCs

c1. Eq. (6.3) consists of the entropy of mixing
of the polymer chains and the solvent molecules, as well as the enthalpy of mixing, characterized by a dimensionless
parameter w.

The concentrations of the mobile ions are taken to be low, so that their contribution to the free energy is due entirely to
the entropy of mixing, namely,

Wion ¼ kT
X
bas

Cb log
Cb

usCscb
o

�1

� �
: ð6:4Þ

The sum is taken over all species of the mobile ions, excluding the solvent, and Cb is the nominal concentration of ionic
species b. To understand this expression, one may consider the external solution. Let cb

0 be a reference concentration of
species b in the solution; at this concentration, the chemical potential of the species is set to be zero. When the
concentration changes to cb, the chemical potential is kT logðcb=cb

0Þ. In the gel, we still assume that the ions and the solvent
form a solution independent of the polymer network. The true concentration of the species b is now cb ¼ Cb=vsCs.

Following Zhao et al. (2007), we assume that the polyelectrolyte gel is an ideal dielectric, with the free energy of
polarization being DiDi/2e per unit volume in current state, the same as that of a liquid. Here Di is the true electric
displacement, and is related to the nominal electric displacement by

Di ¼
~DK FjK

det F
: ð6:5Þ

We express the free energy of polarization as a function of the nominal fields:

Wpol ¼
1

2e
FiKFiL

det F
~DK
~DL: ð6:6Þ

Because of the difference in the dielectric properties between the solvent and the network molecules, the permittivity
of the gel in general is a function of the solvent concentration, e(Cs). A simple estimate would be the volumetric average
among the solvent and the network:

e¼ enþvsCses

1þvsCs
; ð6:7Þ
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where en and es are the permittivity of the polymer network and the solvent, respectively. However, often the major part of
the gel is occupied by the solvent, vsCs

c1, and we will simply use the permittivity of the solvent for the gel, independent of
the composition.

We have now constructed a specific free-energy function. Applying this free-energy function to Eq. (5.7), we obtain that

sij ¼
NkT

det F
ðFiK FjK�dijÞþ

1

e DiDj�
1

2
DmDmdij

� �
�Pdij: ð6:8Þ

The first term is due to the entropy of the network, the second is the Maxwell stress, and the third is the osmotic
pressure. In our formulation of the theory, it is evident that the Maxwell stress can be used to describe the effect of electric
field on deformation only for liquid-like dielectrics, but not for more general dielectrics. For a review of other models of
electromechanical coupling see Zhao and Suo (2008).

Applying the free-energy function to (4.6), and expressing the resulting equation in terms of the true quantities, we
recover the familiar relation

Di ¼ eEi: ð6:9Þ

Applying the free-energy function to (5.4), we obtain the electrochemical potential of each species of ions:

mb ¼ eFzbþkTlog
Cb

vsCscb
0

þPvb: ð6:10Þ

When the external solution equilibrates with the gel, the electrochemical potential of each species of ions is uniform
throughout the external solution and the gel, and results from the following effects: a positive ion increases its
electrochemical potential when the electric potential is high, an ion increases its electrochemical potential when its
concentration is high, and an ion increases its electrochemical potential when both its effective volume vb and the osmotic
pressure are positive.

The solvent molecules are taken to be uncharged. Applying the free-energy function to (5.4), we obtain the chemical
potential of the solvent:

ms ¼ kT log
vsCs

1þvsCs
þ

1

1þvsCs
þ

w
ð1þvsCsÞ

2
�
X
bas

Cb

Cs

" #
þPvs: ð6:11Þ

When the external solution equilibrates with the gel, the chemical potential of the solvent is uniform throughout the
external solution and the gel. Eq. (6.11) is applicable to both the external solution and the gel. In the external solution, the
terms due to mixing the polymers and the solvent should be dropped, and the chemical potential of the solvent in the
external solution is due to the presence of ions and the osmotic pressure. The osmotic pressures in the external solution
and in the gel are usually unequal.

7. Free swelling

We now explore consequences of the theory by considering several special cases. As the first special case, consider the
free swelling of a gel immersed in an external solution (Fig. 2a). Free swelling has been analyzed by many authors by using
free-energy functions containing diverse physical effects, as reviewed by Brannon-Peppas and Peppas (1991). Here we will
analyze free swelling by using the free-energy function specified in the previous section. The results will be used in the
later sections to compare with swelling subject to constraints, and swelling of gels of small sizes.

As discussed in Section 1, an electrical double layer forms at the interface between the gel and the external solution. The
characteristic thickness of the double layer, the Debye length, is often much smaller than the size of the gel and of the
external solution. At a distance larger than the Debye length from the interface, in either the gel or the external solution,
electroneutrality prevails and the electric field vanishes. The electric potential and the osmotic pressure are uniform deep
inside the gel, change across the interface, and then are uniform deep inside the external solution. We will study the overall
swelling in this section, and then the electrical double layer in the later sections.

We set the electric potential and the osmotic pressure deep inside the external solution to be zero. Let F and P be the
electric potential and the osmotic pressure deep inside the gel. To illustrate essential ideas, we assume that only two
species of ions, of valences +1 and -1, are mobile in the gel and in the external solution. Let C+ and C� be the nominal
concentrations of the two species of ions in the gel. The amount of the gel is taken to be much smaller than that of the
external solution, so that the concentration of either species of the ions deep inside the external solution remains at a fixed
level c0, invariant as the gel swells. At the concentration c0, the electrochemical potentials of the two species of ions in the
external solution are set to be zero. When the gel equilibrates with the external solution, the electrochemical potential of
each species of the ions is uniform throughout the gel and the external solution, so that (6.10) gives that

Cþ ¼ c0vsCsexp
�eF�Pvþ

kT

� �
; ð7:1Þ

C� ¼ c0vsCsexp
eF�Pv�

kT

� �
: ð7:2Þ
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Here v+ is the volume per counterion, and v� the volume per co-ion.
The chemical potential of the solvent is also uniform throughout the gel and the external solution. Deep inside the

external solution, the two species of ions each has a concentration of c0. We can apply (6.11) to the external solution by
dropping the contributions of the network and osmosis, so that the chemical potential of the solvent in the external
solution is ms=�2kTvsc0. Equating the chemical potential of the solvent in the external solution to that in the gel, (6.11), we
obtain that

P¼
kT

vs

Cþ þC�

Cs
�2vsc0�log

vsCs

1þvsCs
�

1

1þvsCs
�

w
ð1þvsCsÞ

2

" #
: ð7:3Þ

This equation is readily interpreted. The osmotic pressure in the gel, P, is due to the imbalance of the ions in the gel and
in the external solution, as well as due to the mixing of the polymers and the solvent.

The ionizable groups on the polymers are taken to be fully dissociated, with C0 being the number of the fixed charges
divided by the volume of the dry polymer. The fixed charges are taken to have valence -1. Deep inside the gel,
electroneutrality prevails. The gel and the external solution are not connected by any electronic conductor, so that no
excess electrons and present in the gel. Consequently, electroneutrality requires that the sum of the number of the fixed
charges and the number of the co-ions equals the number of the counterions:

C0þC� ¼ Cþ : ð7:4Þ

When the gel equilibrates with the external solution, the network expands by an isotropic stretch l. If the concentration
of ions are much lower than that of the solvent, v7C7oovsCs, the solvent molecules contribute most to the swelling of the
gel. The condition of incompressibility of the polymers and solvent molecules (5.1) becomes that

1þvsCs ¼ l3: ð7:5Þ

Deep inside the gel, both the electric field and the stress vanish, so that (6.8) becomes

P¼NkTðl�1
�l�3

Þ: ð7:6Þ

As expected, the osmosis of the gel relative to the external solution counteracts the contractility of the network.
Observe that P decreases as l increases. This trend is understood as follows. The osmotic pressure enters (6.8) as a part of
the true stress. When the network swells, the contractile force increases, but the size of the gel also increases, resulting in a
reduction in the true contractile stress.

The six algebraic equations, (7.1)–(7.6), solve the six unknowns F, P, l, C+, C� , Cs, while all other quantities in these
equations are considered known. We note two limiting cases. In the limit of a concentrated solution, when the
concentration of ions in the external solution is much higher than the concentration of the fixed charges, C0cC0, the effect
of the fixed charges is negligible, and the polyelectrolyte gel behaves the same as the neutral gel. In this limit, the true
concentrations of ions in the gel are the same as those in the external solution:

Cþ

vsCs
¼

C�

vsCs
¼ c0; ð7:7Þ

A combination of (7.3), (7.5) and (7.6) gives

logð1�l�3
Þþl�3

þwl�6
þNvsðl�1

�l�3
Þ ¼ 0: ð7:8Þ

This nonlinear algebra equation determines the free swelling ratio of a gel in a concentrated solution.
In the limit of a dilute solution, when the concentration of ions in the external solution is much lower than the

concentration of the fixed charges, c05C0, inside the gel, the number of the co-ions is negligible, and the fixed charges are
fully compensated by the counterions, namely,

C� ¼ 0;Cþ ¼ C0: ð7:9Þ

A combination of (7.3), (7.5) and (7.6) gives

logð1�l�3
Þþl�3

þwl�6
�

vsC0

l3
�1
þNvsðl�1

�l�3
Þ ¼ 0: ð7:10Þ

This nonlinear algebra equation determines the free swelling ratio of a gel in a dilute solution. In this limit,
electroneutrality demands that the number of the counterions be the same as that of the fixed changes. Consequently, the
concentration of the counterions inside the gel is much higher than that in the external solution, resulting in an additional
osmotic pressure that causes the network to imbibe more solvent.

Fig. 4 plots numerical results for free swelling. In these and subsequent numerical calculations, we assume that
v+ =v� =vs, and write vs=v. A change in the volumes of the ions may slightly affect the quantitative results, but should
maintain the overall trend. We also set Nv=10�3, which means that each polymer chain contains 10�3 monomers; and set
w=0.1, which means that the polymers and the solvent have a slightly positive enthalpy of mixing.

Fig. 4a and b show the expected trend: the swelling ratio increases from the limit of a gel in a concentrated solution to
the limit of a gel in a dilute solution. When the ionic concentration of the external solution is high compared to the
concentration of the fixed charges on the polymers, ions in the gel are nearly balanced with ions in the external solution
and contribute to osmosis negligibly, so that and the polyelectrolyte gel behaves like a nonionic gel. When the ionic
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concentration of the external solution is low compared to the concentration of the fixed charges on the polymer,
electroneutrality demands that the concentration of the counterions in the gel be equal to the concentration of the fixed
charges, and the excess counterions motivate more solvent to enter the gel. In practice, the ionic concentration can be
increased by adding slat to the external solution. Thus, polyelectrolyte gels are responsive to the change in the slat
concentration (Ricka and Tanaka, 1984; Hooper et al., 1990).

Fig. 4a and b also show that the swelling ratio increases with the concentration of the fixed charges. This trend is readily
understood: the more fixed charges on the polymers, the more counterions need be inside the gel to maintain
electroneutrality. The larger excess of mobile ions in the gel causes more solvent to enter. The concentration of the fixed
charges may be varied by the design of the polymer chains. A more intriguing way to vary the concentration of the fixed
charges is by an association–dissociation reaction, so that the amount of swelling of the polyelectrolyte gel can be
regulated by pH (e.g., Brannon-Peppas and Peppas, 1991).

Figs. 4c and d plot the concentrations of the counterions and of the co-ions inside the gel. When the gel is immersed in
an external solution of a low ionic concentration, inside the gel the concentration of the counterions is the same as that of
the fixed charges, and the concentration of the co-ions is vanishingly small. When the gel is immersed in an external
solution of a high ionic concentration, the concentrations of both the counterions and the co-ions in the gel are the same as
those in the external solution.

Fig. 4e shows that the osmotic pressure inside the gel increases with the concentration of the ions in the external
solution. As indicated by (7.3), the osmotic pressure has two contributions: the imbalance of the ions between the gel and
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the external solution, and the mixing of the polymers and solvent. The former reduces the osmotic pressure as the
concentration of ions in the external solution increases, but the latter increases the osmotic pressure as the concentration
of solvent in the gel decreases. The combination gives the overall trend of the osmotic pressure shown in Fig. 4e. This trend
is consistent with the trend of the swelling ratio in Fig. 4a, because the osmotic pressure balances the contractile stress,
which decreases as the gel swells.

Fig. 4f plots the electric potential of the gel relative to the external solution. The trends are readily understood. From the
condition of neutrality, in the gel the counterions always outnumber the co-ions, C+>C� , so that the electric potential of the
gel is always below that in the external solution. When either the number of fixed charges is large or the external solution
is dilute, the ratio C+/C� increases, lowering the electric potential in the gel.

8. Constrained swelling

A gel often swells under constraint. For example, a thin layer of a gel, coated on a substrate of a stiff material, can only
swell in the direction normal to the surface, but not in the directions within the surface. As another example, when used as
a transducer, a gel needs to push against some hard materials. It is known that constraints markedly modify the amount of
swelling of neutral gels (e.g., Treloar, 1950; Hong et al., 2009).

To illustrate constrained swelling of a polyelectrolyte gel, consider a disk of a gel, with the thickness constrained to a
fixed value, but the radius allowed to swell freely (Fig. 2b). This example may model a transducer that changes the blocking
force associated with a change in the concentrations of ions in the solution. Let l0 be the fixed stretch in the thickness
direction, and l be the stretch in the radial direction. Incompressibility of the polymers and solvent molecules relates the
solvent concentration and the stretch:

1þvsCs ¼ l0l
2: ð8:1Þ

Deep inside the gel, the electric field vanishes, and so does the stress in the radial direction. Consequently, the osmotic
pressure is uniform, and (6.8) becomes that

P¼
NkT

l0l
2
ðl2
�1Þ: ð8:2Þ

Once again, the contractility of the network counteracts the osmosis of the gel.
Eqs. (8.1) and (8.2), along with (7.1)–(7.4), solve the six unknowns F, P, l, C+, C� , Cs. In the limit of a gel in a

concentrated solution, the swelling ratio l is determined by

log
l0l
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þ
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þ
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Þ
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�1Þ ¼ 0: ð8:3Þ

In the limit of a gel in a dilute solution, the swelling ratio l is determined by
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Nvs

l0l
2
ðl2
�1Þ ¼ 0: ð8:4Þ

Fig. 5 shows that all the trends in the constrained swelling remain the same as those in the free swelling, Fig. 4. The
constraint, however, substantially reduces the volume of swelling. The constraint somewhat affects the concentrations of
the ions and the electric potential in the gel.

The constraint also causes a blocking stress in the gel along the thickness direction. Specializing (6.8), we obtain this
stress:

s0 ¼
NkT

l0l
2
ðl2

0�l
2
Þ: ð8:5Þ

When the stretch in the direction of thickness is constrained at a level smaller than the swollen stretch in the radial
direction, l0ol, the blocking stress is compressive, s0o0. Note that NkT is the elastic modulus of the dry polymer. Fig. 6
plots the stress as a function of the concentration of ions in the external solution. The magnitude of the stress increases as
the concentration decreases. The blocking stress can be changed by varying the concentration of the fixed charges. These
observations should be of interest when a gel is used as an actuator.

9. Inhomogeneous field in the external solution

We next examine the inhomogeneous field in the gel and in the external solution near their interface (Fig. 2c). The
interface is assumed to be flat, and both the gel and the external solution are large compared to the Debye length. This
section describes the field in the external solution, and the next section the field in the gel. The external solution consists of
solvent molecules and ions, and may be considered as a special case of the general theory presented in Section 5, with Wrest

and Wsol removed. The field in the solution is well studied (e.g., Russel et al., 1989). The basic equations are listed here for
use later in this paper.
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Let the x-axis be perpendicular to the interface, with the origin coinciding with the interface, and the direction towards
the external solution. Near the interface, the electric potential and the osmotic pressure varies with x, as noted F(x) and
P(x). Because no external stress is applied, the stress normal to the interface vanishes, so that Eq. (6.8) gives that

P¼
e
2

dF
dx

� �2

: ð9:1Þ

This equation is interpreted as follows. Consider a small volume of the solution. The osmotic pressure tends to draw
solvent into the volume, while the Maxwell stress tends to expel solvent out the volume. In equilibrium, the osmotic
pressure counteracts the Maxwell stress. Note that e represents the permittivity of the solvent. In this paper, however, we
assume the same permittivity in the gel and in the solvent.

Denote the concentration of the two species of ions in the external solution by c+(x) and c�(x). Deep inside the external
solution, the two species of ions have the same value of a fixed concentration, c+(N)=c+(N)=c0, the electrochemical
potentials of the two species of the ions are set to be zero, m+(N)=m+(N)=0, and the electric potential is also set to be zero,
F(N)=0 . In equilibrium, the electrochemical potential of each species is uniform, so that m+(x)=m+(x)=0. The electric
potential, however, is nonuniform, and so is the osmotic pressure. Eq. (6.10) gives that

cþ ¼ c0exp �
eFþPvþ

kT

� �
; ð9:2Þ

c� ¼ c0exp �
�eFþPv�

kT

� �
: ð9:3Þ

The positive ions concentrate where the electric potential is low, and the negative ions concentrate where the electric
potential is high.

Near the interface, the two species of ions no long balance each other, c+(x)ac+(x). The excess electric change is the
source that gives the nonuniform electric potential, governed by Poisson’s equation:

�e d2F
dx2
¼ eðcþ�c�Þ: ð9:4Þ

Submitting (9.1)–(9.3) into (9.4), we obtain that

2
d2C

dx2
¼ exp C�v�c0

dC
dx

� �2
" #

�exp �C�vþ c0
dC
dx

� �2
" #

; ð9:5Þ

where C=Fe/kT is the dimensionless electric potential, and x=x/LD is the dimensionless coordinate, with LD being the
Debye length:

LD ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kTe

2e2c0

s
: ð9:6Þ

The concentrations of ions in the solution are typically low, v7 c0oo1, so that the term containing (dF/dx)2 can be
neglected from the right-hand side of (9.5). Thus, (9.5) is often written in a more familiar form, i.e., the Poisson–Boltzmann
equation:

d2C
dx2
¼ sinhC: ð9:7Þ

Integrating this second-order ordinary differential equation once subject to the boundary condition C(N)=0, we obtain
that

dC
dx
¼�2sinh

C
2
: ð9:8Þ

This first-order differential equation can be integrated subject to the conditions that both the electric displacement and
the electric potential are continuous across the interface.

10. Inhomogeneous field in the gel

Now we study the inhomogeneous field in the gel near the interface. An element of the network occupies the place of
coordinate X when the gel is in the reference state, and moves to the place with coordinate x when the gel is swollen. The
function x(X) describes the deformation of the gel. Near the interface, the gel does not swell homogeneously. The stretch
normal to the interface is

l1ðXÞ ¼ dx=dX: ð10:1Þ

Constrained by the overall swelling of the gel, the stretches parallel to the interface are equal and uniform in the gel; we
designate this uniform stretch by l2, which is the same as the stretch due to free swelling.
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The assumption of incompressibility relates the nominal concentration of the solvent molecules to the stretches.
Typically the concentrations of ions in the gel are low, so that the condition of incompressibility reduces to

1þvsCs ¼ l1l
2
2: ð10:2Þ

Near the interface, the electric charge is no longer neutral. The excess charge, e(C+
�C��C0), causes an inhomogeneous

field of electric potential, F(x), governed by the Poisson equation:

e d2F
dx2
¼

e

l1l
2
2

ðC0þC��Cþ Þ: ð10:3Þ

Near the interface, the osmotic pressure is also inhomogeneous, P(x). The component of stress normal to the interface
vanishes, so that (6.8) gives that

P¼
NkT

l1l
2
2

ðl2
1�1Þþ

e
2

dF
dx

� �2

: ð10:4Þ

The osmotic pressure is balanced by the contractile stress of the network and the Maxwell stress.
Inserting the expressions for the concentrations of the counterions and co-ions, (7.1) and (7.2), into the Poisson

equation (10.3), we obtain that

d2C
dx2
¼

C0

2c0

1

l1l
2
2

þ 1�
1

l1l
2
2

 !
sinhC: ð10:5Þ

Inserting (7.1)–(7.3) and (10.2) into (10.4), we obtain that

dC
dx

� �2

þ
N

c0

l1

l2
2

�
1

l1l
2
2

 !
þ

1

vc0
log 1�

1

l1l
2
2

 !
þ

1

l1l
2
2

þ
w

l2
1l

4
2

" #
�2ðcoshC�1Þ ¼ 0: ð10:6Þ

Eliminating l1 from (10.5) and (10.6), we obtain a second-order ordinary differential equation for C(x). The equation is
subject to the following boundary conditions. Both electric displacement and the electric potential in the gel match those
in the external solution, so that Eq. (9.8) holds at x=0. Deep inside the gel, the electric field vanishes, so that dF/dx=0 as
x-�N . The differential equation is integrated numerically.
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Fig. 7. The inhomogeneous fields in the gel near the interface. (a) Electric potential. (b) Swelling ratio. (c) Electric charge. (d) Stress in a direction parallel
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Once the function C(x) is determined, the distribution of stretch l1(x) is determined from (10.5), and the distribution of
the stress parallel to the interface is determined from

s22 ¼
NkT

l1l
2
2

ðl2
2�l

2
1Þ�e

dF
dx

� �2

: ð10:7Þ

This equation is obtained from (6.8).
Fig. 7 plots the numerical results. As expected, at a distance larger than the Debye length in the gel, the field becomes

homogeneous, the same as in the overall swelling studied above. To understand various trends in Fig. 7, consider the case
of the gel in a dilute ionic solution, vc0=10�5. The concentration of the fixed charges is vC0=0.002. As discussed above,
deep inside the gel, the concentration of counterions is equal to that of the fixed charges. Near the interface, however, the
counterions in the gel spill into the external solution to gain entropy. The loss of the counterions causes the gel to be
negatively charged near the interface, and the electric potential to bend up. The loss of the counterions also expels some
solvent molecules from the gel, decreasing the swelling ratio near the interface. Because the stretch parallel to the interface
is set by the overall swelling of the gel, the loss of solvent molecules near the interface causes a tensile stress in the
directions parallel to the interface. The stress peaks at a finite depth from the interface, due to the repulsion between net
charges accumulated near the interface.

11. Swelling of a thin layer of a gel

Consider a polyelectrolyte gel of a small characteristic size immersed in a large amount of an external solution of a low
ionic concentration. The size of the gel may become comparable to, or even smaller than, the Debye length. The network
has a relatively high concentration of the fixed charges. The counterions, however, spill into the external solution to gain
entropy. Consequently, the entire gel is charged, and the charge of the gel is screened by counterions in the external
solution.

To illustrate this situation, here we study a layer of a polyelectrolyte gel, whose thickness H is comparable to the Debye
length LD (Fig. 2d). The x-axis remains normal to the interfaces, with the origin of the axis now coinciding with the center of
the gel. The reference state of the gel occupies the region �H=2oXoH=2. The gel swells in the external solution under no
external forces. The stretch through the thickness in nonuniform, l1(X), while stretches in the plane of the layer is uniform,
l2=l3.

The field equations are the same as those in the last section, except that l2 is no longer the stretch of the swelling of a
thick gel, but a constant to be determined. No mechanical load is applied. In the direction of thickness, this condition is
satisfied by requiring s11=0, which leads to (9.1). In the directions in the plane of the layer, this condition of no external
force is enforced by requiring that the integral of the in-plane stress vanish:Z h=2

0
s22dx¼ 0: ð11:1Þ

where h is the thickness of the swollen gel. Using (6.8), this expression can be rewritten in a dimensionless form:

Z Z=2

0

Nv

l1l
2
2

l2
1þl

2
2

2
�1

 !
þ log 1�

1

l1l
2
2

 !
þ

1

l1l
2
2

þ
w

l2
1l

4
2

þ2vc0ð1�coshCÞ

" #
dx¼ 0: ð11:2Þ

where Z=h/LD.
The two unknown functions, C(x) and l1(x), and the one unknown constant, l2, are determined by three coupled

equations (10.5), (10.6) and (11.2), subject to the boundary conditions:

dC
dx

�����0 ¼ 0; ð11:3Þ

dC
dx

Z
2
¼�2sinh

CðZ=2Þ

2
:

���� ð11:4Þ

We solve this set of equations by integrating (10.5) and (10.6) numerically and using a shooting method to determine
l2.

Fig. 8 plots the numerical solution for the case h=2LD. When the concentration of ions in the external solution, c0, is
relatively high, the effect of the fixed charges is negligible, and the swelling ratio of the polyelectrolyte gel is similar to that
of a neutral gel. When the concentration of ions in the external solution is low, the swelling of the polyelectrolyte gel
becomes inhomogeneous. The stress parallel of the surface is tensile at the center of the gel and compressive at the surface.

Once l1(x) is determined, H is determined by integrating (10.1), orZ Z=2

0

dx
l1ðxÞ

¼
H

2LD
: ð11:5Þ
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Fig. 8. The inhomogeneous fields in a layer of a gel, of thickness twice the Debye length. (a) Electric potential. (b) Swelling ratio. (c) Electric charge.

(d) Stress in a direction parallel to the interface.
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To illustrate size-dependent swelling, Fig. 9 plots h/H and l2 as functions of H/LD. The swelling ratios are low when the
thickness of the layer is small, but asymptote to the value of a thick gel when the thickness exceeds several times the
Debye length.
12. Concluding remarks

This paper develops a field theory of polyelectrolyte gels by integrating a recent formulation of the theory of elastic
dielectrics with the Gibbs theory of swelling elastic solids. The theory is separated into parts specified by general
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principles, and parts specified by special models. This modularization may aid the further development of the theory. A
form of the free-energy function is prescribed to describe idealized behavior of polyelectrolyte gels. The theory is applied to
study free and constrained swelling of a polyelectrolyte network immersed in an ionic solution. Swelling is affected not
only by the ionic concentration of exterior solution, but also by geometric constraints. A blocking stress against the
imposed constraints can be determined readily by the theory. Boundary-value problems are solved to study the
inhomogeneous fields near the gel-solution interface and in an ultrathin layer of a gel. The method to construct free-energy
function may be applied to study diverse effects, such as pH-sensitive gels and temperature-sensitive gels; see Marcombe
et al. (2010). The theory may be used to determine inhomogeneous fields in polyelectrolyte gels in nature and in
engineering.
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