Acta Mechanica Solida Sinica, Vol. 23, No. 6, December, 2010 ISSN 0894-9166
Published by AMSS Press, Wuhan, China

THEORY OF DIELECTRIC ELASTOMERS**

Zhigang Suo*
(School of Engineering and Applied Sciences, Kavli Institute for Nanobio Science and Technology, Harvard
University, Cambridge, MA 02138, USA)

Received 25 October 2010, revision received 30 November 2010

ABSTRACT In response to a stimulus, a soft material deforms, and the deformation provides
a function. We call such a material a soft active material (SAM). This review focuses on one
class of soft active materials: dielectric elastomers. When a membrane of a dielectric elastomer
is subject to a voltage through its thickness, the membrane reduces thickness and expands area,
possibly straining over 100%. The dielectric elastomers are being developed as transducers for
broad applications, including soft robots, adaptive optics, Braille displays, and electric generators.
This paper reviews the theory of dielectric elastomers, developed within continuum mechanics
and thermodynamics, and motivated by molecular pictures and empirical observations. The the-
ory couples large deformation and electric potential, and describes nonlinear and nonequilibrium
behavior, such as electromechanical instability and viscoelasticity. The theory enables the finite
element method to simulate transducers of realistic configurations, predicts the efficiency of elec-
tromechanical energy conversion, and suggests alternative routes to achieve giant voltage-induced
deformation. It is hoped that the theory will aid in the creation of materials and devices.

KEY WORDS soft active material, dielectric elastomer, electromechanical instability, large de-
formation, transducer

I. INTRODUCTION
1.1. Soft Active Materials for Soft Machines

The convergence of parts of biology and engineering has created exciting opportunities of discovery,
invention and commercialization. The overarching themes include using engineering methods to advance
biology, combining biology and engineering to invent medical procedures, and mimicking biology to
create engineering devices.

Machines in engineering use mostly hard materials, while machines in nature are often soft. What
does softness impart to the life of animals and plants? A conspicuous feature of life is to receive and
process information from the environment, and then move. The movements are responsible for diverse
functions, far beyond the function of going from place to place. For example, an octopus can change
its color at an astonishing speed, for camouflage and signaling. This rapid change in color is mediated
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Fig. 1. The environment affects a material through diverse stimuli, such as a force, an electric field, a change in pH, and
a change in temperature. In response to a stimulus, a soft active material (SAM) deforms. The deformation provides a
function, such as a change in color and a change in flow rate.

by thousands of pigment-containing sacs. Attached to the periphery of each sac are dozens of radial
muscles. By contracting or relaxing the muscles, the sac increases or decreases in area in less than a
second. An expanded sac may be up to about 1 mm in diameter, showing the color. A retracted sac
may be down to about 0.1 mm in diameter, barely visible to the naked eyelll.

As another example, in response to a change in the concentration of salt, a plant can change the
rate of water flowing through the xylem. This regulation of flow is thought to be mediated by pectins,
polysaccharides that are used to make jellies and jams. Pectins are long polymers, crosslinked into
a network. The network can imbibe a large amount of water and swell many times its own volume,
resulting in a hydrogel. The amount of swelling changes in response to a change in the concentration
of salt. The change in the volume of the hydrogel alters the size of the microchannels in the xylem,
regulating the rate of flow(?.

The above examples concerning animals and plants are intriguing. But many more examples are
everywhere around and inside us. Consider the accommodation of the eye, the beating of the heart, the
sound shaped by the vocal folds, and the sound in the ear. Abstracting these biological soft machines, we
may say that a stimulus causes a material to deform, and the deformation provides a function (Fig.1).
Connecting the stimulus and the function is the material capable of large deformation in response to
a stimulus. We call such a material a soft active material (SAM).

An exciting field of engineering is emerging that uses soft active materials to create soft machines.
Soft active materials in engineering are indeed apt in mimicking the salient feature of life: movements
in response to stimuli. An electric field can cause an elastomer to stretch several times its length. A
change in pH can cause a hydrogel to swell many times its volume. These soft active materials are
being developed for diverse applications, including soft robots, adaptive optics, self-regulating fluidics,
programmable haptic surfaces, electric generators, and oilfield management!3 8l

Research in soft active materials has once again brought mechanics to the forefront of human
creativity. The familiar language finds new expressions, and deep thoughts are stimulated by new
experience. To participate in advancing the field of soft active materials and soft machines effectively,
mechanicians must retool our laboratories and our software, as well as adapt our theories.

The biological phenomena, as well as the tantalizing engineering applications, have motivated the
development of theories of diverse soft active materials, including dielectric elastomers!? 13!, elastomeric
gels[14 19 polyelectrolytes?%:21) pH-sensitive hydrogels?? 24 and temperature-sensitive hydrogels!?®!.
The theories attempt to answer commonly asked questions. How do mechanics, chemistry, and elec-
trostatics work together to generate large deformation? What characteristics of the materials optimize
their functions? How do molecular processes affect macroscopic behavior? How efficiently can a material
convert energy from one form to another? The theories are being implemented in software, so that they
can become broadly useful in the creation of materials and devices.

1.2. Dielectric Elastomers

This review will focus on a class of soft active materials: dielectric elastomers. All materials contain
electrons and ions—charged particles that move in response to an applied voltage. In a conductor,
electrons or ions can move over macroscopic distances. By contrast, in a dielectric, the charged particles
move relative to one another by small distances. In the dielectric, the two processes—deformation and
polarization—are inherently coupled. All dielectrics are electroactive.

Figure 2 illustrates the principle of operation of a dielectric elastomer transducer. A membrane of
a dielectric elastomer is sandwiched between two electrodes. For the dielectric elastomer to deform
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Fig. 2. A dielectric elastomer in the reference state and in a current state.

substantially, the electrodes are made of an even softer substance, with mechanical stiffness lower than
that of the dielectric elastomer. A commonly used substance for electrodes is carbon grease. When the
transducer is subject to a voltage, charge flows through an external conducting wire from one electrode
to the other. The charges of the opposite signs on the two electrodes cause the membrane to deform.

It was discovered a decade ago that an applied voltage may cause dielectric elastomers to strain
over 100%!3). Because of this large strain, dielectric elastomers are often called artificial muscles. In
addition to large voltage-induced strains, other desirable attributes of dielectric elastomers include
fast response, no noise, light weight, and low cost. The discovery has inspired intense development
of dielectric elastomers as transducers for diverse applications!?628!, The discovery has also inspired
renewed interest in the theory of coupled large deformation and electric field[®13.

This paper reviews the theory of dielectric elastomers. §II describes the thermodynamics of a trans-
ducer of two independent variations. Emphasis is placed on basic ideas: states of the transducer, cyclic
operation of the transducer, region of allowable states, equations of state, stability of a state, and
nonconvex free-energy function. These ideas are described in both analytical and geometrical terms.
§III develops the theory of homogeneous fields. After setting up a thermodynamic framework for elec-
tromechanical coupling, we consider several specific material models: a vacuum as an elastic dielectric
of vanishing stiffness, incompressible materials, ideal dielectric elastomers, electrostrictive materials,
and nonlinear dielectrics. §IV applies nonequilibrium thermodynamics to dissipative processes, such
as viscoelasticity, dielectric relaxation, and electrical conduction. §V discusses electromechanical in-
stability, both as a mode of failure and as a means to achieve giant voltage-induced deformation. §VI
outlines the theory of inhomogeneous fields. The condition for thermodynamic equilibrium is formulated
in terms of a variational statement, as well as in terms of partial differential equations. The model of
ideal dielectric elastomers is described. Also described is a finite element method for analyzing elastic
dielectric membranes of arbitrary shapes. We perturb a state of static equilibrium to analyze oscillation
and bifurcation. We examine the conditions of equilibrium for coexistent phases.

II. THERMODYANMICS OF A TRANSDUCER

It is well appreciated that most fundamental concepts of thermodynamics can be illustrated by
using a fluid—a system capable of two independent variations (thermal and mechanical). The fluid
can serve as the working substance of many devices for thermomechanical energy conversion, including
engines and refrigerators. By analogy, the same concepts of thermodynamics are summarized here for
electromechanical transducers. We are mostly concerned with transducers made of elastomers, which are
highly entropic. To describe such a transducer with two independent variations (electrical and mechan-
ical), here we limit ourselves to isothermal processes, removing temperature from explicit consideration.

2.1. States of a Transducer

Figure 3 illustrates a transducer, consisting of a dielectric that separates two electrodes. The trans-
ducer is subject to a force P, represented by a weight. The two electrodes are connected through a
conducting wire to a voltage &, represented by a battery. The weight moves by distance [, and the
battery pumps charge @ to flow through the conducting wire from one electrode to the other.

Because the force P and the voltage @ can be applied independently, the transducer is capable of two
independent variations. Consequently, the states of the transducer can be represented graphically on a
plane. The two coordinates of the plane may be chosen from variables such as P, @, [ and Q. Figure 4, for
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Fig. 3. A transducer consists of a dielectric separating two

electrodes. The transducer is subject to a force, represented Fig. 4. In a plane with force and displacement as coordi-
by a weight P. The two electrodes are connected through nates, a point represents a state of a transducer. A curve of a
a conducting wire to a battery of voltage @ . The weight constant voltage is the force-displacement curve measured
moves by distance [, and the battery pumps charge Q from when the transducer is subject to a constant voltage.

one electrode to the other.

example, illustrates a plane with the force P and the displacement [ as the coordinates. A point in the
plane represents a state of the transducer. Also plotted in the plane are two force-displacement curves
of the transducer, each curve being measured as the transducer deforms under a constant voltage.

When the transducer is subject to a constant weight, but the voltage is changed from 0 to @; , the
transducer changes from state A to state B, lifting the weight. When the displacement [ is held constant,
a change in the voltage causes the transducer to change from state A to state C, with accompanying
change in the force.

We could have also plotted on the (I, P) plane curves of constant values of charge. Each curve of a
constant charge would be the force-displacement curve of the transducer measured under the open-circuit
condition, when the two electrodes maintain a fixed amount of charge during deformation.

Following Gibbs’s graphical method for the thermodynamics of fluids??!, we may choose any two
of the four variables P, &, [ and @ as coordinates. Each choice represents the transducer on a different
plane. All these planes represent the same states of the transducer, because the transducer is capable
of only two independent variations. Nonetheless, different planes emphasize different attributes of the
states. For example, the (P, @) plane may be used to indicate loading conditions, while the (I, Q) plane
may be used to indicate kinematic conditions. The (I, @) plane is often used to report the voltage-induced
deformation, while the (P, Q) plane may be used to report force-induced charge. In mathematical terms,
mapping the states of the transducer from one plane to another is a change of variables, or a trans-
formation of coordinates. The mapping is carried out by using equations of state, to be described in §2.4.

2.2. Cyclic Operations of a Transducer

Many uses of transducers involve cyclic changes of states. A particular cycle of states is illustrated
in Fig.5, on the (@, ®?) plane. To operate a transducer in this cycle, we will need two batteries: one at
a low voltage @, and the other at a high voltage @ . The four sides of the rectangular cycle shown in
Fig.5 represent the following processes:

(1) In changing from state A to state B, the transducer is connected to the battery of the low voltage,
@1,.. A change in the applied force reduces the spacing between the two electrodes, causing the charge
on the electrodes to increase.

(2) In changing from state B to state C, the transducer is under an open-circuit condition and the
electrodes maintain the constant charge @ 7. A change in the applied force increases the spacing between
the two electrodes, raising the voltage to @ .

(3) In changing from state C to state D, the transducer is connected to the battery of the high
voltage, @g. A change in the applied force increases the spacing between the two electrodes, causing
the charge on the two electrodes to decrease.
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(4) In changing from state D to state A, the transducer is under an open-circuit condition and
the electrodes maintain the constant charge QJr.. A change in the applied force decreases the spacing
between the two electrodes, lowering the voltage to &y .

This cycle of operation of an electromechanical transducer is analogous to the Carnot cycle, provided
we replace voltage with temperature, and replace charge with entropy. During the cycle, the transducer
receives mechanical work from the environment, draws an amount of charge from the low-voltage battery,
and deposits the same amount of charge to the high-voltage battery. Thus, the transducer is a generator,
producing electric energy by receiving mechanical work. The mechanical work can be done, for example,
by an animal or human during walking. The mechanical work can also be done on a large scale, for
example, by ocean waves.

Indeed, a closed curve of any shape on the (Q, @) &
plane represents a cyclic operation of the trans-
ducer. To operate such a cycle would require a 350 R D Y

variable-voltage source. The amount of energy con-
verted per cycle is given by the area enclosed by the
cycle on the (Q,®) plane. When the states cycle

3 R

counterclockwise on the (@, ®) plane, the trans- A 1B
ducer is a generator, converting mechanical energy . .
to electrical energy. When the states cycle clock- QIL QIH 3

wise on the (Q7 Q) plane, the transducer is an ac- Fig. 5 In a plane with voltage and charge as coordinates, a
tuator, converting electrical energy to mechanical point represents a state of a transducer. A use of the trans-
energy. ducer typically involves a cyclic change of the state. The rect-
Cyclic operation of a transducer can also be angle represents a cycle involving two levels of voltage and two
represented on the (I, P) plane. Figure 4 already values of charge.
contains force-displacement curves measured with two values of constant voltage. We could add force-
displacement curves measured with two values of constant charge. The four curves would represent the
same cycle of operation as that shown in Fig.5.

2.3. Modes of Failure and Region of Allowable States

A transducer may fail in multiple modes, such as mechanical rupture, electrical breakdown, elec-
tromechanical instability, and loss of tension!39 32/, The critical condition for each mode of failure can
be represented on the (@, ®) plane by a curve. Curves of all modes of failure bound in the plane a
region, which we call the region of allowable states of the transducer. Such graphic methods have been
used to optimize actuators®®34 and calculate the maximal energy of conversion for generators[3> 37,
Figure 6 shows an example[®!. By transformations of coordinates, we can represent the same modes of

0.8
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Fig. 6. A state of a dielectric membrane is represented by a point in the charge-voltage planc[35] . The coordinates are given
in dimensionless forms, with the horizontal axis being the normalized charge, and the vertical axis being the normalized
voltage. Plotted are curves representing various modes of failure: electrical breakdown (EB), electromechanical instability
(EMI), loss of tension (s = 0), and rupture by stretch (A = Ar). These curves bound the region of allowable states of the
transducer. A cycle involving two levels of voltage and two values of charge is represented by dotted lines.
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failure on planes (I, P), (I,Q), etc.

2.4. Equations of State

We will analyze isothermal processes of a transducer, and remove temperature from explicit consid-
eration. A main component of the transducer is an elastomer—a three-dimensional network of long and
flexible polymer chains. The thermodynamic behavior of the transducer is highly entropic, characterized
by the Helmholtz free energy, which we denote as F'.

On dropping a small distance 6, the weight does work Pdl. On pumping a small amount of charge
0@, the battery does work ®#0Q. The force is work-conjugate to the displacement, and the voltage is
work-conjugate to the charge. When the transducer equilibrates with the applied force and the applied
voltage, the change in the free energy of the transducer equals the sum of the work done by the weight
and the work done by the battery:

O0F = Pol + P0Q (1)
This condition of equilibrium holds for arbitrary and independent small variations 6/ and §Q.

The two independent variables (I, Q) characterize the state of the transducer. The Helmholtz free
energy of the transducer is a function of the two independent variables:

F=F(,Q) (2)
Associated with small variations §] and 6@, the free energy varies by
_OF(,Q) IF (1,Q)
oF = 5l ol + 20 0Q (3)
A comparison of Egs.(1) and (3) gives
oF (1,Q) OF (1,Q) _
[ ol P}él—i—{ 90 P16Q =0 (4)

When the transducer equilibrates with the weight and the battery, the condition of equilibrium (4)
holds for independent and arbitrary variations 6/ and 6@Q. Consequently, in equilibrium, the coefficients
of the two variations in Eq.(4) both vanish, giving

oF (1,Q)

P=—5 (5)
_IF(,Q)
o= Q0 (6)

Once the free-energy function F (I, Q) is known, Eqgs.(5) and (6) express P and @ as functions of [ and
Q. That is, the two equations give the force and voltage needed to cause a certain displacement and a
certain charge. The two equations (5) and (6) constitute the equations of state of the transducer. The
equations represent the transformations that map the states of the transducer from one thermodynamic
plane to another.

Equation (5) can be used to determine the free-energy function from the force-displacement curves
of the transducer measured under the open-circuit conditions, when the electrodes maintain constant
charges. For each value of @, the free energy is the area under the force-displacement curve. Sim-

ilarly, Eq.(6) can be used to determine the free- P ?
energy function from the voltage-charge curves of I Voltage
the transducer. As mentioned before, (I, P) and A +Q é? o
(Q, @) are convenient planes to represent the states (Electrode % T
of the transducer when we wish to highlight work I s

d Vacuum
and energy. [Electrode

As an illustration, consider a parallel-plate
capacitor—two plates of electrodes separated by P
a thin 1ayer of a vacuum (Flg'7)' The separation | Fig. 7 A parallel-plate capacitor consists of two electrodes
between the two electrodes may vary, but the area separated by a thin gap of a vacuum. When a voltage is ap-
A of either electrode remains fixed. Recall the ele- plied, the two electrodes attract each other. The electrostatic
mentary fact that the amount of charge on either attraction is balanced by applying a force.

Force
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electrode is linear in the voltage:

lQ
o= 7
oA (7)
where g¢ is the permittivity of the vacuum. Inserting Eq.(7) into Eq.(6), and integrating Eq.(6) with

respect to @ while holding [ fixed, we obtain that

1Q?
FUQ) =5t 0
Inserting Eq.(8) into Eq.(5), we obtain that
_ @
- 2A€0 (9)

Equations (7) and (9) constitute the equations of state of the parallel-plate capacitor. They are
readily interpreted. The applied voltage causes charge to flow from one electrode to the other, so that
one electrode is positively charged, and the other negatively charged. Equation (7) relates the charge
to the applied voltage. The oppositely charged electrodes attract each other. To maintain equilibrium,
a force need be applied to each electrode. Equation (9) relates the applied force to the charge.

Define the electric field by F = &/l and the stress by o = P/A. Rewrite Eq.(9) as

o= Leom? (10)
2
This equation gives the stress needed to be applied to the electrodes to counteract the electrostatic
attraction. This stress is known as the Maxwell stress.

2.5. Stability of a State against Linear Perturbation

For a given transducer, the free energy F' (I, Q) may take a complicated functional form. The equations
of state, Eqs.(5) and (6), are in general nonlinear. If the transducer operates in the neighborhood of
a particular state (I, Q), the equations of state can be linearized in this neighborhood, written in an
incremental form:

_PFLQ) 5, PFLQ)

0P =~ 0+ 5 iQ (11)
_PF(,Q) OF (1,Q)

50 = = el 500 (12)

The increments of the loads, P and 0®, are linear in the increments of the kinematic variables,
8l and 6Q. This procedure is known as linear perturbation. We call 92F (I,Q) /9I? the mechanical
tangent stiffness of the transducer, and 9*F (I, Q) /0Q? the electrical tangent stiffness of the trans-
ducer. The two electromechanical coupling effects are both characterized by the same cross derivative,

92F (1, Q) /(818Q) = 0%F (1, Q) /(QAL). The matrix
92F (1,Q)  9*F (1,Q)

_ 012 0Q0l
HEO=\prug 2r1.Q (13)
0loQ 0Q?

is known as the Hessian of the free-energy function F (I, Q).

As mentioned above, a state of the transducer can be represented by a point in the (I, Q) plane,
as well as by a point in the (P, @) plane. For the same state of the transducer, the point in the (I, Q)
plane is mapped to the point in the (P, ®) plane by the equations of state, (5) and (6). The mapping
may not always be invertible. That is, given a pair of the loads (P, ®), the equations of state may not
be invertible to determine a state (I, Q). For example, Eqs.(11) and (12) are not invertible when the
Hessian is a singular matrix, det H = 0.

This singularity may be understood in terms of thermodynamics. The transducer and the loading
mechanisms (i.e., the weight and the battery) together constitute a thermodynamic system. The free
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energy of the system is the sum of the free energies of the individual parts—the transducer, the weight,
and the battery. The free energy (i.e., the potential energy) of a constant weight is —PI. The free energy
of a battery of a constant voltage is —®@) . Consequently, the free energy of the thermodynamic system
combining the transducer and the loading mechanisms is

G(,Q)=F(,Q)— Pl—2Q (14)
The system has two independent variables, [ and Q.
Thermodynamics requires that the system should reach a stable state of equilibrium when the free-
energy function G (I, Q)) is a minimum against small changes in [ and . When the weight moves by !
and the battery pumps charges 6@, the free energy of the system varies by

_[oF(,Q) OF (1,Q) PF(1,Q) ..o
0%F (1,Q) OF (1,Q)
a0 (01) (6Q) + —55 o (6Q)° (15)

We have expanded the Taylor series of the function F (I, Q) up to terms quadratic in §l and 6Q. In a
state of equilibrium, the coefficients of the first-order variations vanish, recovering the equations of state
(5) and (6). To ensure that this state of equilibrium minimizes G, the sum of the second-order variations
must be positive for arbitrary combination of §/ and §@Q. That is, a state of equilibrium is stable against
small perturbation if the Hessian of the free energy of the transducer, H (I, Q), is positive-definite. The
two-by-two matrix is positive-definite if and only if

O2F (1 82F (1 92F (1 92F (1 9*F (1,Q)1°
.Q) _, PFO.Q)_ (LQ] [PFLQ] _ [*F(1,Q) 1)
ol? 0Q? ol? 0Q? oloqQ
When the Hessian of the free energy function is positive-definite, the function F (I, Q) is convex at this

state (I, Q).
As an illustration, consider the parallel-plate capacitor again. Given the free-energy function (8),
the second derivatives are
FPUQ) _, PFP1LQ) _ I {aZ‘Fu,Q)} @ -
ol? - 0Q%  gA’ 0loQ A (17)
Consequently, the Hessian is not positive-definite in any state of equilibrium. That is, the parallel-plate
capacitor subject to a constant force and a constant voltage cannot reach a stable state of equilibrium.
The conclusion is readily understood. The weight is independent of the separation between the plates,
but the electrostatic attractive force increases as the separation decreases. Subject to a fixed weight,
the two plates will be pulled apart if the voltage is low, and will be pulled together if the voltage is
high.

The capacitor can be stabilized by a modification of the loading mechanisms. For example, we can
replace the weight with a spring that restrains the relative movement of the plates. Let K be the stiffness
of the spring, and [ybe the separation between the electrodes when the spring is unstretched, so that
the force in the spring is P = K (o — ). The free energy of the system is the sum of the free energies
of the capacitor, the spring and the battery:

1Q? 1 2
G(laQ)—m‘FgKU—lo) —PQ (18)
In a state of equilibrium, the first derivatives of G (I, Q) vanish, giving the same equations of state as
Eqs.(10) and (12). The state of equilibrium is stable if and only if the Hessian of G (I, Q) is positive-
definite. The second derivatives of the function G (I, Q) are
9%G (1,Q) K 0?G (1, Q) o 9%G (1,Q) _Q 19
ol? Y 0Q2  gA’ 0l0Q A (19)
A state of equilibrium (I, @) is stable if and only if
Kl Q\?
217 (2a) 2
Thus, the transducer is stable when the spring is stiff and the applied voltage is small.
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2.6. Nonconvex Free-Energy Surface

Following Gibbs[®8), we may interpret above analytical statements geometrically. This geometric
representation not only shows the geometric nature of the stability against linear perturbation, but
also shows the possibility of coexistent states.

Consider a three-dimensional space with (I, Q) as the horizontal plane, and F' as the vertical axis.
In this space, the Helmholtz free energy F' (I, Q) is represented by a surface. Consider an inclined plane
passing through the origin of the space, with P being the slope of the inclined plane with respect
to the [ axis, and @ being the slope of the inclined plane with respect to the @ axis. According to
Eq.(14), the vertical distance between the surface F' (I, Q) and the inclined plane is the function G (I, Q).
Thermodynamics dictates that this vertical distance G (I, Q) should minimize when the transducer
equilibrates with the loads (P, ®).

Picture a plane simultaneously parallel to the inclined plane and tangent to the surface F' (I, Q).
From the geometry, the tangent point minimizes the vertical distance G (I, Q) if the surface F (I, Q) is
above the tangent plane—that is, if the surface F (I, Q) is convex at the state (I, Q).

When the loads (P, @) change gradually, the inclined plane rotates, and the associated tangent plane
rolls along the free-energy surface. If the surface F (I, Q) is globally convex, every tangent plane touches
the surface at only one point, and only one state of equilibrium is associated with a pair of given loads
(P, ®). By contrast, if part of the surface F' (I, Q)) is concave, a tangent plane may touch the surface at
two points, and the two states of equilibrium are associated with a pair of given loads (P, ®).

It was discovered that the free-energy functions for dielectric elastomers are typically nonconvex!39!.,
Associated with a given set of loads, two states of equilibrium may coexist. This topic will be discussed
in §5.4 and §6.8.

II1. HOMOGENEOUS FIELD

We now develop a field theory of deformable dielectrics. The field theory assumes that a body is a
sum of many small pieces, and the field in each small piece is homogeneous. This assumption enables
us to define quantities per unit length, per unit area, and per unit volume. This section focuses on the
homogeneous field of a small piece, and §VI considers inhomogeneous field in the body by summing up
small pieces.

This section begins by setting up a thermodynamic framework for electromechanical coupling. We
then consider several specific material models: a vacuum as an elastic dielectric of vanishing rigidity,
incompressible materials, ideal dielectric elastomers, electrostrictive materials, and nonlinear dielectrics.

3.1. Condition of Thermodynamic Equilibrium

With reference to Fig.2, consider a membrane of an elastic dielectric, sandwiched between two
compliant electrodes. In the reference state, the dielectric is subject to neither force nor voltage, and
the dielectric is of dimensions L1, Lo and L3. In the current state, the dielectric is subject to forces Py,
P, and Ps, and the two electrodes are connected to a battery of voltage ¢ through a conducting wire.
In the current state, the dimensions of the dielectric become 1, I and [3, the two electrodes accumulate
electric charges @, and the Helmholtz free energy of the membrane is F.

When the dimensions of the dielectric change by 611, dl2 and §l3, the forces do work P;dly + Podls +
P30l3. When a small quantity of charge d@) flows through the conducting wire, the voltage does work
®6(Q). When the dielectric equilibrates with the forces and the voltage, the increase in the free energy
equals the work done:

OF = P16l + Pydlo + P3éls + @5@ (21)

The condition of equilibrium (21) holds for arbitrary small variations of the four independent variables,
ll, lQ, lg and Q

3.2. Equations of State in Terms of Nominal Quantities
Define the nominal density of the Helmholtz free energy by W = F/(L1LaLs), stretches by A\ =
l1/L1, A2 = l2/Ly and A3 = I3/L3, nominal stresses by s; = Py/(LaL3) , s2 = P2/ (L1L3) and s3 =

P5/ (L1 L2), nominal electric field by E = /L3, and nominal electric displacement by D = Q /(L1 Ls).
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The amount of charge on either electrode relates to the nominal electric displacement by @ = l~)L~1L2.
When the membrane is subject to forces and voltage, the variation of the charge is §QQ = L1L20D.

Divide both sides of Eq.(21) by LjLaLg, the volume of the membrane in the reference state. We
obtain that o

5W = 515)\1 + 825/\2 + 535/\3 + E5D (22)

This condition of equilibrium holds for arbitrary and independent small variations dA1, 62, A3 and
oD.

As a material model, the nominal density of the Helmholtz free energy is prescribed as a function
of the four independent variables:

W:W()\l,)\g,/\3,D) (23)
Inserting Eq.(23) into Eq.(22), we obtain that
ow ow ow oW =\ =
— — oA — — oA — - oA — —F|éD=0 24
(8/\1 51) 1+ (8/\2 S2> 2 + (8)\3 83) 3+(8D ) (24)

This condition of equilibrium holds for arbitrary and independent small variations A1, A2, A3 and
0D. Consequently, when the dielectric equilibrates with the applied forces and the applied voltage, the
coefficient in front of each variation in Eq.(24) vanishes, giving

oW ()\1,/\2,/\3,[))

_ 25
s1 oo (25)
oW ()\1, Ao, As, D)
S92 = (26)
g
oW ()\1, Ao, Ag,D)
S3 = (27)
D
~ ow (A17A27A37D)
E= (28)

aD
The equations of state (25)-(28) give the values of the forces and voltage needed to equilibrate with
the dielectric in the state ()\1, A2, Ag, D) once the free-energy function W ()\1, A2, Ag, D) is prescribed

as a material model.

In the above, we have defined stresses as applied forces divided by areas. In the absence of the
applied forces, the stresses in the dielectric vanish. The stresses are zero even when the voltage causes
the dielectric to deform. Thus, when the battery applies a voltage to the dielectric, the positive charge
on one electrode and the negative charge on the other electrode cause the dielectric to thin down.
We simply report what we have observed in this experiment: the voltage causes the dielectric to de-
form. We do not jump to the conclusion that the voltage causes a compressive stress. In this regard,
we view the deformation caused by the voltage in the same way as we view the deformation caused
by a change in temperature: both are stress-free deformation, so long as the material is unconstrained!*2!.

3.3. Equations of State in Terms of True Quantities

In §3.2, we have represented the equations of state in terms of the nominal quantities. We now
represent the equations of state in terms of true quantities. The two sets of equations describe the same
condition of thermodynamic equilibrium, but they are convenient under different circumstances.

Define the true stresses by o1 = P1/ (l2l3), 02 = P/ (l1l3) and o3 = Ps/ (I1l2), true electric field by
E = @/l3, and true electric displacement by D = @Q/(l1l2). The amount of charge on either electrode
relates to the electric displacement by Q = DIlo. When the membrane is subject to forces and voltage,
all three quantities D, [; and [5 can vary, so that the variation of the charge is

85Q = Dlybly + Dly6ly + 131,6D (29)
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This equation should be contrasted with 6Q = L;L26D , where the nominal electric displacement is
used.

Dividing both sides of Eq.(21) by L;LsLs, the volume of the membrane in the reference state, and
using Eq.(29), we obtain that

OW = (01 + DE) A A3d\ + (02 + DE) M A36A2 4+ 03A1 A20A3 + A A2 A3 E0D (30)

The condition of equilibrium (30) holds for arbitrary and independent variations d\1, dA2 , A3 and
0D.

As a material model, the nominal density of Helmholtz free energy is taken to be a function of the
four independent variables,

W =W (A1, A2, A3, D) (31)
Comparing Eqs.(23) and (31), we remark that here the true electric displacement, rather than the

nominal electric displacement, is used as an independent variable.
Inserting Eq.(31) into Eq.(30), we obtain that

ow ow
|:(9—)\1 — (0’1 + DE) /\2/\3:| oA + |:(9—)\2 — (0’2 + DE) /\1/\3:| 0N

ow ow
+ (8—)\3 - 03)\1)\2) 0A3 + (8—D - )\1)\2)\3E> 6D =0 (32)

This condition of equilibrium holds for arbitrary and independent small variations A1, d\2, A3 and
0D. Consequently, when the dielectric equilibrates with the applied forces and the applied voltage, the
coefficient in front of each variation in Eq.(32) vanishes, giving

o ow ()\17)\27)‘371))

o= —ED (33)
on =2 (:E’Aj;’QS’D ) gD (34)
= @)
S 2

Equations (33)-(36) constitute the equations of state for an elastic dielectric once the function W (A,
A2, Az, D) is given. These equations suggest that electromechanical coupling be classified into two kinds.
First, the geometric coupling is characterized by Eq.(29), which results in the term DE in Eqgs.(33) and
(34). Second, the material coupling is characterized by the function W (A1, A2, A3, D). Several specific
material models are described next.

3.4. Vacuum

We think of a vacuum as an elastic dielectric with vanishing stiffness, undergoing a homogenous
deformation A1, A2, and A3. Recall an elementary fact that in the vacuum the electric field relates to
the electric displacement as F = D/eq. Integrating Eq.(30) with respect to D, while holding A1, Ay and

A3 fixed, we obtain that
D2
W(A17)\27)\3;D) = E)\l)\QAg (37)
0

This expression recovers a familiar result in electrostatics: D?/ (2g¢) is the electrostatic energy per unit
volume in the vacuum. The factor A\; A2 A3 appears in Eq.(37) because we have defined W as the nominal
density of energy.
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Inserting Eq.(37) into Eqs.(33)-(35), we obtain that

1
o1 = —580E2 (38)
1 2
g9 = —§€0E (39)
1 2
g3 = EEOE (40)

Equations (38)-(40) recover the stresses obtained by Maxwellll, They are valid in the vacuum when
the electric field is in direction 3.

The Maxwell stress is a tensor. In §2.4, we have interpreted the component of the Maxwell stress in
the direction of the electric field. We now look at the two components of the Maxwell stress transverse
to the direction of the electric field. Figure 8 illustrates a classic experiment of a capacitor, which is
partly in the air and partly in a dielectric liquid. The applied voltage causes the liquid to rise to a
height h. The height results from the balance of @ 3e0E?
the Maxwell stress and the weight of the liquid. l
The Maxwell stress parallel to the electrodes in -
the air is 0, = —&,E?/2, where ¢, is the permit-
tivity of the air. The Maxwell stress parallel to the
electrodes in the liquid is oy = —&;E?/2, where ¢
is the permittivity of the liquid. The electric field
near the air/liquid interface is distorted, so that
the above two formulas are correct only at some
distance away from the interface. Because ¢; > ¢,,
the difference in the Maxwell stresses in the two
media will draw the liquid up against gravity. Ex-
amining the free-body diagram, and balancing the Fig. 8 A parallel-plate capacitor is partly in the air and
electrostatic forces with the weight of the liquid, partly in a dielectric liquid. When a voltage is applied, the
we obtain that pgh = (e, — €q) E2/2, where pg is liquid rises. As indicated by the free-body diagram on the

the weight per unit volume of the liquid. right, the rise of the liquid is due to the balance between the
Maxwell stress and the weight of the liquid.

r
1
|
1
1
'
|
1
1

pgh

%EEQ

3.5. Incompressibility
When an elastomer undergoes large deformation, the change in the shape of the elastomer is
typically much larger than the change in the volume. Consequently, the elastomer is often taken
to be incompressible—that is, the volume of the material remains unchanged during deformation,
111213 = L1L2L3, so that
AA2Az =1 (41)
This assumption of incompressibility places a constraint among the three stretches. We regard A\, and
A2 as independent variables, rewrite Eq.(41) as A3 = 1/ (A1A2), and express 63 in terms of )\ and

(5)\2!
M 02

A2 M2

In terms of the variations of the independent variables, the condition of equilibrium (30) becomes

X3 = (42)

+02—03—|—DE

=t - X2 + ESD (43)

For an incompressible dielectric, the condition of equilibrium (43) holds for arbitrary and independent
variations d\1, A2 and §D. For an incompressible elastic dielectric, the density of the free energy is a
function of the three independent variables: W = W (A1, A2, D). Equation (43) becomes that

OW  o1—o03+ DE OW  0y—o03+DE oW
O AT BT Vst (e - BT o+ (S5 —E)éD=0 (44
<8>\1 A ) 1+<8A2 Ao ) 2+(3D ) ()
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Because A1, d\2 and §D are independent variations, the condition of equilibrium (44) is equivalent to
three equations:

o1 — 03 = Alw —ED (45)
oy — 03 = M%&’D) —ED (46)
OW (A1, Mg, D)
= rb22 ) 4
3D (47)

Once the function W (A1, A2, D) is given for an incompressible dielectric elastomer, the four equations,
(41) and (45)-(47), constitute the equations of state.

3.6. Ideal Dielectric Elastomers
An elastomer is a three-dimensional network
of long and flexible polymers, held together by
crosslinks (Fig.9). Each polymer chain consists of
a large number of monomers. Consequently, the
crosslinks have negligible effect on the polarization
of the monomers—that is, the elastomer can polar-
ize nearly as freely as a polymer melt. This molec-
ular picture is consistent with the following exper- Fig. 9 An elastomer is a three dimensional network of long
imental observation: the permittivity changes by and flexible polymer chains. Each polymer chain consists of
only a few percent when a membrane of an elas- * large number of monomers.

tomer is stretched to increase the area 25 times Y.

As an idealization, we may assume that the dielectric behavior of an elastomer is exactly the same
as that of a polymer melt—that is, the true electric field relates to the true electric displacement as

E=DJe (48)

where ¢ is the permittivity of the elastomer, taken to be a constant independent of deformation. Inserting
Eq.(48) into Eq.(43), and integrating Eq.(43) with respect to D while holding A1 and A, fixed, we obtain

that
2

D
W(A17A27D):WS ()‘17)\2)+2_E (4‘9)

The constant of integration, W (A1, A2), is the Helmholtz free energy associated with the stretching

of the elastomer. The material is also taken to be incompressible, A\; A2 A3 = 1. This material model

(49) is known as the model of ideal dielectric elastomers®®]. In this model (49), the stretches and the

polarization contribute to the free energy independently. Consequently, the electromechanical coupling

in an ideal dielectric elastomer is purely a geometric effect, in the sense as remarked at the end of §3.3.
Inserting Eq.(49) into Egs.(45) and (46), and also using Eq.(48), we obtain that

o1 — oy = 3 s B, A2) gii A2) _ g2 (50)
09 — 03 :)\2%?\;7)\2) —8E2 (51)

Equations (41), (48), (50) and (51) constitute the equations of state for an incompressible, ideal dielectric
elastomer, provided the permittivity € and the function Wy (A1, \2) are given. These equations of
state have been used almost exclusively in all analyses of dielectric elastomers, and agree well with
experimentally measured equations of state*?. The equations are usually justified in terms of the
Maxwell stressi®!, and can be interpreted using the model of ideal dielectric elastomers®). That is,
the Maxwell stress is valid when the dielectric behavior of the material is liquid-like, unaffected by
deformation.
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As shown in Egs.(50) and (51), a through-thickness voltage induces a compressive stress of magnitude
eF? in the two in-plane directions. This magnitude is twice the magnitude of the Maxwell stress. The
apparent difference is readily understood (Fig.10). Because the elastomer is taken to be incompressible,
superposition of a state of hydrostatic stress does not affect the state of deformation. Start from the
state of triaxial stresses (—eE?/2, —eE?/2, +eE?/2), as derived by Maxwell. A superposition of a
state of hydrostatic stress (+¢E%/2, +¢E?/2, +eE?/2) gives a state of uniaxial stress (0, 0, +e£2). A
superposition of a state of hydrostatic stress (—e E?/2, —eE?/2, —cE?/2) gives a state of biaxial stress
(—5E2, —eE? O). For an incompressible material, the three states of stress illustrated in Fig.10 cause
the same state of deformation.

o= %EEQ o=cE? o =cE?
Triaxial stresses Uniaxial stresses Biaxial stresses

Fig. 10. A dielectric in three states of stresses.

The free energy due to the stretching of the elastomer, W (A1, A2), may be selected from a large
menu of well-tested functions in the theory of rubber elasticity. For example, the neo-Hookean model
takes the form

Wo =5 (3 + 2+ -3) (52)

where p is the small-stress shear modulus. This free energy is due to the change of entropy when polymer
chains are stretched*3.

In an elastomer, each individual polymer chain has a finite contour length. When the elastomer is
subject to no loads, the polymer chains are coiled, allowing a large number of conformations. Subject
to loads, the polymer chains become less coiled. As the loads increase, the end-to-end distance of each
polymer chain approaches the finite contour length, and the elastomer approaches a limiting stretch. On
approaching the limiting stretch, the elastomer stiffens steeply. This effect is absent in the neo-Hookean
model, but is represented by the Arruda and Boyce model*¥) and the Gent model*). The latter takes
the form

Jlim (53)
where p is the small-stress shear modulus, and Jjiy, is a constant related to the limiting stretch. The
stretches are restricted as 0 < ()\% + A2+ 0% - 3) /Jiim < 1. When (/\f + A2+ A% - 3) /Jiim — 0, the
Taylor expansion of Eq.(53) is Eq.(52). That is, the Gent model recovers the neo-Hookean model when
deformation is small compared to the limiting stretch. When (A7 + A3 4+ A3 — 3) /Jiim — 1, the free
energy diverges, and the elastomer approaches the limiting stretch.

- :_ujlimlog(l_)\§+/\§+)\§—3>
: 2

3.7. Electrostriction

Subject to a voltage through the thickness, some dielectrics become thinner, but other dielectrics
become thicker (Fig.11). For dielectrics that are nonpolar in the absence of electric field, the voltage-
induced deformation has been analyzed by invoking stresses of two origins: electrostriction and the
Maxwell stress. The electrostriction results from the effect of deformation on permittivity.

As a simplest model of electrostriction, we still assume that the true electric field is linear in the
true electric displacement, but now the permittivity is a function of the stretches. Write the relation
between the electric field and the electric displacement as

D
P 54
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Fig. 11. Consider a dielectric that is nonpolar in the absence of applied voltage (a). Subject to a voltage, some dielectrics
become thinner (b), but other dielectrics become thicker (c).

The same procedure as that in §3.6 gives/*0]

OW,5 (A1, A A1 02 (A1, A
01—03:/\1#— {5()\17)\2)4-71%12)} E2 (55)
i 8WS (/\1, )\2) )\2 Oe (/\1, )\2) 2
Ug—Ug—AQT— |:€()\1,)\2)+?87)\2 E (56)

Equations (41) and (54)-(56) constitute the equations of state for an incompressible, electrostrictive
dielectric elastomer.

When the permittivity varies significantly with the stretches, the terms 9e (A1, A2) /OA1 and 9e(A1, A2)
/O0X2 in Egs.(55) and (56) make sizable contributions. In particular, when the permittivity decreases
substantially as the stretches increase, the stresses associated with the electric field may change the
sign. It is well known that, for many dielectrics other than elastomers, a voltage applied through the
thickness causes the dielectrics to increase the thickness, as shown in Fig.11(c).

The variation of the permittivity with stretches has been observed experimentally for a dielectric
elastomer”. Further measurements are needed to ascertain the practical significance of electrostriction
in dielectric elastomers.

3.8. Nonlinear Dielectrics

In the models described so far, the electric field is taken to be linear in the electric displacement.
We now consider a nonlinear dielectric. In an elastomer, each polymer chain may consist of monomers
of electric dipoles. In the absence of the applied voltage, the dipoles undergo thermal fluctuation, and
are randomly oriented. The situation is similar to water molecules. When the elastomer is subject
to a voltage, the dipoles rotate toward the direction of the electric field. When the voltage becomes
sufficiently high, the dipoles become perfectly aligned with the electric field, and the polarization of
the material saturate. This nonlinear dielectric behavior may be included by generalizing the model of
ideal dielectric elastomers!4®l.

As an idealization, we may assume that the dielectric behavior of an elastomer is exactly the same
as that of a polymer melt, so that the electric field relates to the electric displacement by a function
independent of deformation:

E=f(D) (57)
The function f (D) can be nonlinear. Following the same procedure as that in §3.6, we obtain that
OWs (A1, A2)
gy =\ —2 2] pp
g1 g3 )\1 a)\l (58)
OWs (A1, A
09 — 03 = )\QM —ED (59)
02

Equations (41) and (57)-(59) constitute the equations of state for an incompressible, ideal dielectric
elastomer, accounting for nonlinear dielectric behavior.

To study the effect of polarization saturation, here we assume that the elastomer is characterized
a nonlinear D-FE relation,D = D, tanh (¢E/Ds), where € and Dy are constants!*®l. When electric field
is low, eE/Ds << 1, the D-E relation recovers the linear dielectric behavior, E = D/e, so that ¢ is
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the small-field permittivity. When the electric field is high, eE/Ds >> 1, the D-E relation becomes
D = Dy, so that Dy is the saturated electric displacement.

The effect of polarization saturation is appreciated by inspecting the equations of state, (58) and
(59). When the dielectric behavior is linear, D = ¢FE, the term DE recovers the Maxwell stress e E2.
As polarization saturates, however, the term DFE becomes Dy E, which increases with the electric field
linearly. Consequently, polarization saturation makes the stress associated with voltage rise less steeply.
This behavior may markedly affect electromechanical coupling!*8).

IV. NONEQUILIBRIUM THERMODYNAMICS OF DIELECTRIC ELASTOMERS

An elastomer responds to forces and voltage by time-dependent, dissipative processes 921, Vis-
coelastic relaxation may result from slippage between long polymers and rotation of joints between
monomers. Dielectric relaxation may result from distortion of electron clouds and rotation of polar
groups. Conductive relaxation may result from migration of electrons and ions through the elastomer.
This section describes an approach to construct models of dissipative dielectric elastomers, guided by
nonequilibrium thermodynamics®2.

Thermodynamics requires that the increase in the free energy should not exceed the total work done,
namely,

OF < Pi6ly + Pdly + Pséls + P6Q (60)
For the inequality to be meaningful, the small changes are time-directed: d f means the change of the
quantity f from one time to a slightly later time.

Divide both sides of Eq.(60) by the volume of the membrane, L1LsLs, and the thermodynamic
inequality becomes

OW < 810A1 + 8202 + 5303 + ESD (61)

As a model of the dielectric elastomer, the free-energy density is prescribed as a function:
W =W (M, 22,25, D, 61,6, ) (62)

We characterize the state of a dielectric by A1, A2, A3 and D, along with additional parameters (&1, &2, ...).
Inspecting Eq.(61), we note that A, A2, A3 and D are the kinematic parameters through which the
external loads do work. By contrast, the additional parameters (€1, s, ...) are not associated with the
external loads in this way. These additional parameters describe the degrees of freedom associated with
dissipative processes, and are known as internal variables.

Inserting Eq.(62) into Eq.(61), we rewrite the thermodynamic inequality as

oW oW 19)%% 19)%% - ~ oW
_ R - _ = S . <
(8)\1 51> oA + (8)\2 82) OAa + (8/\3 53) 0A3 + (a E) 0D + % o€, 08, <0 (63)

As time goes forward, this thermodynamic inequality holds for any change in the independent variables
()\1, A2, A3, D, &1,&9, ) We next specify a model consistent with this inequality.

We assume that the system is in mechanical and electrostatic equilibrium, so that in Eq.(63) the
factors in front of 61, 02 , dA3 and D vanish:

ow (Al,Ag,/\g,D,gl,gg,...)

51 = O (64)
ow (A1;A27)\37D7§15€25"')

s9 = W (65)
ow (A17A27)‘37ﬁ7§17§27"')

53 = (66)

O0As

oW (A de, e D66 )
E = . (67)
oD
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Equations (64)-(67) constitute the thermodynamic equations of state of the dielectric elastomer.
Once the elastomer is assumed to be in mechanical and electrostatic equilibrium, the inequality (63)
becomes

OW (A1, Mo, N3, D, &1, o, ...
> (M 262 £1,6 )5@@ )

%

This thermodynamic inequality may be satisfied by prescribing a suitable relation between (0&1, 6a, ...)
and (OW/9&1,0W /&, ...). For example, one may adopt a kinetic model of the type

dfi - ow ()\la/\2,/\3,D,§1,§2,...)
dt _;Mi‘ 0&;

(69)

Here M;; is a positive-definite matrix, which may depend on the independent variables (A1, Az,

)\37 -[)7517527 )
To represent a dissipative dielectric elastomer using the above approach, we need to specify a
set of internal variables (1,&a,...), and then specify the functions W ()\1,/\2,)\3,b,§1,§2, ) and

M;; ()\1, A2, A3, D, &1, &, ) There is considerable flexibility in choosing kinetic models to fulfill the

thermodynamic inequality (68). To develop a kinetic model for a given material, one also draws upon
mechanistic pictures and experimental data.

Viscoelastic relaxation is commonly pictured with an array of springs and dashpots, known as the
rheological models; see recent examples(©2:%3]. Similarly, dielectric relaxation is commonly pictured with
models consisting of resistors and capacitors. By contrast, electrical conduction involves the transport
of charged species over a long distance. Coupled large deformation and transport of charged species
are significant in polyelectrolytes?!), and will not be discussed here.

V. ELECTROMECHANICAL INSTABILITY

While all dielectrics deform under voltage, the amount of deformation differs markedly among different
materials. Under voltage, piezoelectric ceramics attain strains of typically less than 1%. Glassy and
semi-crystalline polymers can attain strains of less than 10%[°4. Strains about 30% were observed
in some elastomers®]. In the last decade, strains over 100% have been achieved in several ways, by
pre-stretching an elastomer(®!, by using an elastomer of interpenetrating networks!®%:>7), by swelling an
elastomer with a solvent[®8!, and by spraying charge on an electrode-free elastomer!®9.

These experimental advances have prompted a theoretical question: What is the fundamental limit
of deformation that can be induced by voltage? After all, one can easily increase the length of a rubber
band several times by using a mechanical force. Why is it difficult to do so by using a voltage?

5.1. Electrical Breakdown and Electromechanical Instability

The difficulty to achieve large deformation by voltage has to do with two modes of failure: electrical
breakdown and electromechanical instability. For a stiff dielectric such as a ceramic or a glassy polymer,
voltage-induced deformation is limited by electrical breakdown, when the voltage mobilizes charged
species in the dielectric to produce a path of electrical conduction. For a compliant dielectric such as
an elastomer, the voltage-induced deformation is often limited by electromechanical instability.

Stark and Garton!®? described a model that accounted for the following experimental observation:
the breakdown fields of a polymer reduces when the polymer becomes soft at elevated temperatures.
As the applied voltage increases, the polymer thins down, so that the same voltage induces an even
higher electric field. This positive feedback results in a mode of instability, known as electromechanical
instability or pull-in instability, which causes the polymer to reduce the thickness drastically, often
leading to electrical breakdown. Electromechanical instability has been recognized as a mode of failure
for insulators in power transmission cables.
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5.2. Desirable Stress-Stretch Behavior for Large Voltage-Induced Deformation

Electromechanical instability is sensitive to the stress-stretch behavior of the elastomer®®. Figure
12(a) sketches a dielectric membrane pulled by biaxial stresses o. The length of the membrane in any
direction in the plane is stretched by a ratio A. As will become clear, to attain a large voltage-induced
stretch, the dielectric should have a stress-stretch curve o () of the following desirable features®1: (a)
The dielectric is compliant at small stretches, and (b) the dielectric stiffens steeply at modest stretches.
That is, the limiting stretch, Ay, should not be excessive.

() (d)

Fig. 12. Several molecular structures can lead to a stress-stretch curve of a desirable form [61], (a) Stress-stretch curve of
a membrane under biaxial stresses. (b) Fibers embedded in a compliant matrix. (c¢) A network of polymers with folded
domains. (d) A network of polymers with side chains. (¢) A network of polymers swollen with a solvent.

Also sketched are several designs of materials that exhibit the stress-stretch curve of the desirable
form. Many biological tissues, such as skins and vascular walls, deform readily, but avert excessive
deformation. Figure 12(b) sketches a design of such a tissue, consisting of stiffer fibers in a compliant
matrix. At small stretches, the fibers are loose, and the tissue is compliant. At large stretches, the fibers
are taut, and the tissue stiffens steeply. As another example, Fig.12(c) sketches a network of polymers with
folded domains. The domains unfold when the network is pulled, giving rise to substantial deformation.
After all the domains unfold, the network stiffens steeply.

Consider an elastomer, i.e., a network of polymer chains. When the individual chains are short, the
initial modulus of the elastomer is large and the limiting stretch Ay, is small. When the individual
chains are long, the initial modulus of the elastomer is small and the limiting stretch Ay, is large.
Consequently, it is difficult to achieve the stress-stretch curve of the desirable form by adjusting the
density of crosslinks alone. The stress-stretch curve, however, can be shaped into the desirable form in
several ways. For example, the widely used dielectric elastomer, VHB, is a network of polymers with
side chains (Fig. 12(d)). The side chains fill the space around the networked chains. The motion of
the networked chains is lubricated, lowering the glass transition temperature. Also the density of the
networked chains is reduced, lowering the stiffness of the elastomer when the stretch is small. While
the side chains do not change the contour length of the networked chains, the side chains pull the
networked chains towards their full contour length even when the elastomer is not loaded. Once loaded,
the elastomer may stiffen sharply, averting electromechanical instability. Similar behavior is expected
for a network swollen with a solvent (Fig.12(e)). The stress-stretch curve can also be shaped into the
desirable form by prestretch[®, or by using interpenetrating networks!®6: 571,

5.3. Voltage-Stretch Curve Goes Up, Down, and Up Again
We now use the stress-stretch curve o (A) to deduce the voltage-stretch curve @ (X). As illustrated
in Fig.13(a), when a membrane of an elastomer, thickness H in the undeformed state, is subject to a
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Fig. 13. Three types of behavior of a dielectric transducer(61]. (a) A membrane of a dielectric elastomer subject to a voltage
reduces thickness and expands area. The voltage-stretch curve is typically not monotonic, (b)-(d) Three types behavior
are distinguished, depending on where the two curves @ (\) and @5 () intersect.

voltage @, the membrane is stretched by A in both directions in the plane, the thickness of the membrane
reduces to HA~2, and the electric field in the membrane is E = A\2®/H. The membrane is taken to be
incompressible. The voltage-induced stretch can be described by using the Maxwell stress (50), namely,
o(\) —eE? =0.

A combination of the above considerations relates the voltage to the stretch:

D=HA /o (\) /e (70)

This voltage-stretch relation is sketched in Fig.13(a). Even though the stress-stretch curve o () is
monotonic, the voltage-stretch curve @ ()) is usually not!3). At a small stretch (A ~1), the rising o (\)
dominates, and the voltage increases with the stretch. At an intermediate stretch, the factor A=2 due
to thinning of the membrane becomes important, and the voltage falls as the stretch increases. As the
elastomer approaches the limiting stretch Ay, the steep rise of o () prevails, and the voltage rises again.
The shape of the voltage-stretch curve @ ()\) indicates a snap-through electromechanical instability39].

The local maximum voltage represents a critical condition, which can be estimated as follows. Under
the equal-biaxial stresses, Hooke’s law takes the form o (A) = 6u (A — 1), where p is the shear modulus.
Inserting this expression into Eq.(70), and maximizing the function @ (), we find local maximum voltage
&, ~ 0.80H/pu/e and the critical A, = 4/3 = 1.33. The critical values vary somewhat with the stress-
stretch relation. For example, for the neo-Hookean model, o (A) = p (/\2 — )\*4), the maximum voltage
is . ~ 0.69H \/u /e and the critical stretch is A, = 21/3 2 1.26. This electromechanical instability has
been analyzed systematically by using the Hessian[02%6), Stability analysis has also been carried out
by considering inhomogeneous perturbation[67-68,

The stretch also affects the voltage for electrical breakdown, #p. The function g (A\) may be
determined experimentally as follows. Before a voltage is applied, an elastomer is prestretched to A by
a mechanical force, and is then fixed by rigid electrodes. Subsequently, when the voltage is applied, the
elastomer will not deform further. The measured voltage at failure is taken to be the voltage for electrical
breakdown, 5. Experiments indicate that the breakdown voltage is a monotonically decreasing function
of the prestretch!3%41), This trend may be understood as follows: the larger the prestretch, the thinner
the membrane, and the higher the electric field for the same applied voltage.
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According to where the curves & (\) and @ (\) intersect, we distinguish three types of transducers(®!.

A type I transducer suffers electrical breakdown prior to electromechanical instability, and is capable of
small voltage-induced deformation, Fig.13(b). A type II transducer reaches the peak of the @ (\) curve,
and thins down excessively, leading to electrical breakdown, Fig.13(c). The transducer is recorded to fail
at the peak of @ (), which can be much below the breakdown voltage @ 5. The voltage-induced deforma-
tion is limited by the stretch at which the voltage reaches the peak. A type III transducer eliminates or
survives electromechanical instability, reaches a stable state before the electrical breakdown, and attains
a large voltage-induced deformation, Fig.13(d). This classification accounts for existing experimental
observations, and suggests alternative routes to achieve giant voltage-induced deformation!6!,

5.4. Coexistent States

A new experimental manifestation of the electromechanical instability has been reported recentlyl
Under certain conditions, an applied voltage can deform a layer of a dielectric elastomer into a mixture
of two regions, one being flat and the other wrinkled (Fig.14). This observation has been interpreted
as the coexistence of two states, resulting from the shape of voltage-stretch curve (Fig.13(a))B9. In
one state, the membrane is thick and has a small area. In the other state, the membrane is thin and
has a large area. The two states may coexist at a specific applied voltage, so that some regions of the
membrane are in the thick state, while other regions are in the thin state. The regions of the thick state
constrain the regions of the thin state. To accommodate the large area in the thin state, the regions of
the thin state form wrinkles.

30]

S

Fig. 14. An experimental observation of electromechanical instability (courtesy of Plante J. S. and Dubowsky S.). A layer
of a dielectric elastomer, coated with conductive grease on top and bottom faces, is pre-stretched using a frame. An electric
voltage is applied between the two electrodes. The layer deforms into a mixture of two regions, one being flat and the
other wrinkled.

VI. INHOMOGENEOUS FIELDS

Following §III, we now sum up small pieces to describe a body of inhomogeneous deformation.
No new physical ingredient is needed, but the reader is assumed of more sophisticated background in
mathematics. Studies of inhomogeneous fields of coupled large deformation and electric potential date
back to classic works of Toupin!®!, Eringen(™ and Tiersten!”". These works have been reexamined
recently for applications to dielectric elastomers!® 13, This section begins by expressing the condition of
thermodynamic equilibrium in terms of a variational statement. The same condition of thermodynamic
equilibrium is also expressed in terms of partial differential equations. We formulate the model of ideal
dielectric elastomers, and describe a finite element method for a dielectric membrane of any arbitrary
shape. We then perturb a state of static equilibrium, a technique commonly used to analyze oscillation
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and bifurcation. We conclude with a discussion of coexistent phases.

6.1. Variational Statement of Thermodynamic Equilibrium

A body of an elastic dielectric is represented by a sum of many small pieces, called material particles.
Each material particle is named after the coordinate X of its place when the body is in a reference
state. In the current state, at time ¢, the particle X moves to a place with coordinate . The function

z=ux(X,t) (71)

describes the history of the deformation of the body. Define the deformation gradient F' as

Fik = %)it) (72)
The deformation gradient generalizes the notion of the stretches.
In the current state at time ¢, the electric potential at particle X is denoted as
=0 (X,t) (73)
The gradient of the electric potential defines the nominal electric field E, namely,

The negative sign in Eq.(74) follows the convention that the electric field points from a material particle
of a high voltage to a material particle of a low voltage.
Motivated by Eq.(22), we write the variation of the nominal density of the Helmholtz free energy,
6W, in the form
oW = s;x0F; i + EK(SDK (75)

where 0F;x is a small change in the deformation gradient, and 6D is a small change in the nominal
electric displacement. Equation (75) defines the nominal stress s as a tensor work-conjugate to the
deformation gradient F', and the nominal electric displacement D as a vector work-conjugate to the
nominal electric field E.

Inspecting Eqs.(72) and (74), we wish to use the deformation gradient and the nominal electric field
as the independent variables. Introducing a new quantity W by

W =W — ExDg (76)

The quantity W may be called the electrical Gibbs free energy. A combination of Eqs.(75) and (76)
gives A L
oW = SiKéFiK — DKéEK (77)
We may call the quantity DxdEx the complementary electrical work.
A material model is prescribed by a function W=w (F , E) . When the body undergoes a rigid-body

motion, the free energy is invariant. Consequently, the function depends on the deformation gradient
F through the Green deformation tensor, Cx = Fik Fir,. Associated with small changes 6 F;x and
0F K, the electrical Gibbs free energy changes by

w(sﬂk + Wﬁ?K (78)

SW =

On each material element of volume dV (X)), we prescribe mass p (X)dV, force B (X,t)dV and
charge ¢ (X, t) dV. The effect of inertia may be represented by adding to the force the inertial force, so that
the combination of the applied force and the inertial force on the element of volume is (B — pdiz/ 8152) dv.
The body may consist of dissimilar dielectrics and conductors, separated by interfaces. Consider an
interface separating two parts of the body labeled as — and 4+. When the body is in the reference state,
denote an element of the interface by dA (X), and denote the unit vector normal to the element of the
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interface by IN, pointing toward part 4+. On the element of the interface, we prescribe force T (X, t) dA
and charge w (X, ) dA.

Let dz; = & (X) be a field of virtual displacement of the body. Associated with the field of virtual
displacement, the forces do virtual work [ (B; — pd*x;/0t?) dx;dV + [ T;6x;dA. Similarly, let 6@ =
1 (X) be a field of virtual electric potential of the body. Associated with the field of electric potential,
the charges do virtual complementary work [ ¢é®dV + [ wdPdA. The virtual deformation gradient is
6Fic = 0 (X) /0Xk , and the virtual nominal electric field is 6 Ex = —dn (X) /0Xk . The virtual
change in the electrical Gibbs free energy is [ SWdV, where §W is given by Eq.(78).

When the body is in thermodynamic equilibrium, the change in the electrical Gibbs free energy
equals the mechanical work minus the complementary electrical work:

2.
/ SWaV = / (Bl- - p%) SV + / Tia;dA — / q6PdV — / wdBd A (79)

This condition of thermodynamic equilibrium has the similar physical content as Egs.(1) and (21), and
holds for arbitrary and independent variations dx and d9. The above presentation follows closely a
previous paper[!?l. Variational statements of various forms may be developed from alternative starting

points(72 751,

Once the loads and the electrical Gibbs free-energy function 1474 (F, E) are prescribed, the varia-
tional statement (79), along with the definitions (72) and (74), is the basis for the finite element method,
determining the field of deformation @ (X, t) and the field of electric potential ¢ (X, t) simultaneously.
Several implementations of the finite element method have been reported!”™ 78!, but few practical ex-
amples are available. Significant effort is needed to develop the finite element method, and to apply the
method to analyze phenomena and devices.

6.2. Differential Equations
A comparison of Eqs.(77) and (78) gives that

SiK = w (80)
-2 AET) o

Once the electrical free-energy function W (F,E) is prescribed, Eqgs.(80) and (81) constitute the
equations of state.

Inserting Eqs.(72), (74) and (77) into the condition of thermodynamic equilibrium (79), and recalling
that the condition holds for arbitrary and independent variations in & and d&®, we obtain that

681'[( (X, t) - 82:51- (X, t)
in the volume
(six —six) N =T (83)
on the interfaces -
0Dk (X ,t)
—— =q(X,t 84
e —a(X (54
in the volume, and
(D = D) Nk =w (X,1) (85)

on the interfaces. Equations (82) and (83) reproduce the equations for momentum balance, and Eqs.(84)
and (85) reproduce Gauss’s law of electrostatics.

Equations (71)-(74) and (80)-(85) are governing equations to determine the field of deformation
x (X ,t) and the field of electric potential ¢ (X ,t) simultaneously, once the loads and the free-energy



Vol. 23, No. 6 Zhigang Suo: Theory of Dielectric Elastomers - 571 -

function W (F , E) are prescribed. These partial differential equations have been used to solve boundary-

value problems!™ 6, Observe that the equations of mechanics, (71), (72), (82) and (83), decouple from
those of electrostatics, (73), (74), (84) and (85). The only coupling between mechanics and electrostatics
arises from the material model, (80) and (81).

6.3. True Quantities
The true stress o;; relates to the nominal stress by

L

i = i 86
75T Jet F Sike (86)

The true electric displacement D; relates to the nominal electric displacement as

Fix =
i = D 87
det F K (87)
The true electric field E; relates to the nominal electric field as

E; = HixEx (88)

where H; is the inverse of the deformation gradient, namely, H;x Fi;, = 0x; and H;x Fijx = 0;j.
The true quantities may be taken as functions of  and ¢, and satisfy the familiar partial differential
equations in mechanics and electrostatics.

6.4. Ideal Dielectric Elastomers

For an isotropic elastic dielectric, the free-energy density is a function of six invariants of the
deformation gradient tensor and the electric field vector(®®). Function of this complexity is unavailable
for any real material. We next describe ideal dielectric elastomers—a material model nearly exclusively
used in the literature. As discussed before in connection with Fig.9, for an ideal dielectric elastomer,
the dielectric behavior is the same as that of a liquid—that is, the dielectric behavior is unaffected by
deformation[®9!.

As a simplest model of a dielectric liquid, assume that the true electric displacement D,, is linear
in the true electric field E,,:

D,, =¢E, (89)

The permittivity ¢ is taken to be independent of deformation.
Using Egs.(87) and (88), we express Eq.(89) in terms of the nominal fields:

DN :EELHmNHmL det F' (90)

Inserting Eq.(90) into Eq.(81) and integrating with respect to E while holding F fixed, we obtain the
nominal density of the electrical Gibbs free energy:

W (F E) =W, (F) - %ENELHmNHmL det F (91)

The constant of integration, Wy (F), is the free energy associated with the elasticity of the elastomer,
which may be selected from a large menu in the theory of elasticity. While the elastomer is nearly
incompressible, in the finite element method, it is convenient to allow the material to be compressible
with a large bulk modulus.

Insert Eq.(91) into Eq.(80), and recall mathematical identities OH,,n/O0F;x = —Hp,xH;y and
ddet F/OF; = H;i det F. We obtain that

oW, (F)
0Fik

This equation of state relates the nominal stress to the deformation gradient and the nominal electric
field.

-~ 1
Sik = +eENEL <HiNHmKHmL - §HmNHmLHiK> det F’ (92)
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A combination of Egs.(86) and (92) gives

0i5 = dijtl;'ag/;if}f‘) + € (ElEJ — %EmEm(Sij> (93)
This equation relates the true stress to the deformation gradient and the true electric field. The con-
tribution due to the deformation gradient results from the stretching of the elastomer, and is the
same as that in the theory of elasticity. The contribution due to the electric field is identical to that
derived by Maxwell“?!, When oi; = 0, Eq.(93) balances elasticity and electrostatics, and determines
the voltage-induced deformation. As commented before, the Maxwell stress correctly accounts for the
voltage-induced deformation only when the dielectric behavior is liquid-like, an idealization that works
well with elastomers, but not for other solid dielectrics.

Equations (89) and (93) constitute the equations of state, for an ideal dielectric elastomer, in terms
of the true quantities. The equations of state exhibit one-way coupling: the deformation does not affect
the electrical behavior, but the electric field contributes to the stress-stretch relation. As noted before,
the partial differential equations of mechanics decouple from those of electrostatics. One may solve
electrostatic boundary-value problems in terms of the true fields, and then add the Maxwell stress in
solving the elastic field. Of course, the deformation will change the shape of the boundary of the body.
This change must be included in solving the electrostatic problems. The one-way coupling may not
bring any advantage after all.

The model of ideal dielectric elastomers can be generalized to account for nonlinear dielectric behavior,
by replacing Eq.(89) with a nonlinear relation between the electric field and electric displacement12 48],
Furthermore, the model of ideal dielectric elastomers can be modified to include dissipative processes,
such as viscoelasticity, dielectric relaxation, and electrical conduction?!:52,

6.5. Weak Statements

We recall a well known statement in continuum mechanics. On each part of the boundary of a body,
either the displacement or the traction is prescribed. Let &; (X)) be a function defined in the body and
on the boundary. Set & (X) = 0 on the part of the boundary where the displacement is prescribed, but
leave the function &; (X) otherwise arbitrary. Equations (82) and (83) are equivalent to requiring that

651 o 62$i

hold for any arbitrary function &; (X)) as described above. The volumetric integrals extend over the
volume of the body, and the surface integral extends over the boundary where the traction is prescribed.
The statement (94) is readily confirmed by applying the divergence theorem.

Also recall a weak statement concerning electrostatics. On each part of the boundary, either the
electric potential or the charge is prescribed. Let 7 (X) be a function defined in the body and on the
boundary. Set n (X) = 0 on the part of the boundary where the electric potential is prescribed, and
leave 7 (X) otherwise arbitrary. Equations (84) and (85) are equivalent to requiring that

/ (_8?(_’7[() DyedV = / nadV + / nwd A (95)

hold for any arbitrary functions 1 (X) as specified above. The volumetric integrals extend over the
volume, and the surface integral extends over the boundary where charge is prescribed.

6.6. Finite Element Method for an Elastic Dielectric Membrane

To induce a significant deformation, the voltage needs to be on the order & ~ H+/u/e, where
H is the thickness over which the voltage is applied, p the shear modulus, and ¢ the permittivity. A
representative order of magnitude is \/p1/e ~ 108 V/m, which is a very high electric field. Consequently,
to reduce the voltage needed for actuation, nearly all dielectric elastomer transducers are in the form
of thin membranes, with the thickness much smaller than the in-plane dimensions of the membranes.

Membranes of circular, spherical and axisymmetric symmetries have been analyzed!®30,47,80-85]
Here we briefly review a finite element method for dielectric membranes of arbitrary shapes, coupled

with passive materials of arbitrary shapes!”".
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Consider a dielectric membrane sandwiched between two electrodes. The nominal electric field in
the membrane takes the form

E=_—_—N(X) (96)

where @ is the voltage applied between the electrodes, H (X)) is the thickness of the membrane, and
N (X)) is the unit vector normal to the membrane. Both the thickness and the unit normal vector are
measured when the membrane is in the reference state, where the thickness may vary from place to
place, and the shape of the membrane can be curved. When the voltage @ is prescribed, Eq.(96) gives
the nominal electric field E.

For any material specified by a function 1474 (F,E), the nominal stress relates to the deforma-

tion gradient and the nominal electric field by s;x = oW (F, E) /OF;k. This equation, along with

Eq.(96), relates the nominal stress to the deformation gradient, with @ as a known parameter. The weak
statement (94) defines a boundary-value problem in elasticity. This boundary-value problem is readily
implemented in the commercial finite element package ABAQUS by using a user-defined subroutinel?].
ABAQUS readily accounts for passive materials of arbitrary shapes.

6.7. Linear Perturbation around a State of Static Equilibrium

We now return to the general theory in §6.1 and §6.2. Subject to a set of time-independent loads,
a body may attain a state of static equilibrium. We may perturb this state with fields small in strain
and electric field!'267:98] Such a linear perturbation analysis is commonly used to analyze oscillation
and bifurcation!®7],

Perturb the state of static equilibrium with a small-amplitude oscillation of frequency (2. Write the
time-dependent fields of deformation and electric potential as

z(X,t) =x°(X)+ ' (X)exp (i2t) (97)
B (X, 1) = 3° (X) + & (X) exp (120) (98)

where x° (X)) and ¢° (X)) are the state of static equilibrium, and ' (X) and ¢’ (X) are the amplitude
fields of the oscillation. Associated with the static state of equilibrium, the deformation gradient is
FS% = 019 (X) /0Xk, and the nominal electric field is ES = —8¢° (X) /0X . Associated with the
oscillation, the amplitudes of the deformation gradient and the nominal electric field are

, 0z (X)
. ad(X)
o
B = -5 (100)

The amplitudes of the oscillation are small, so that the amplitudes of the nominal stress and the
nominal electric displacement can be obtained by linear perturbation:

sixk = KikjrL i — eikLEl, (101)
D/L = eiKLFi/K + ELKE}{ (102)
The tangent moduli are calculated from

02w 02w 02w

— e ==, €; = - 103
OF;10F;k KL OExOFE] KL OF,xOF;, (103)

Kk =

The derivatives are calculated at the static field (FO, Eo). So long as the oscillation around a static

field is concerned, all dielectrics, including vacuum, act like a linear piezoelectric. Because the static
state of equilibrium can be inhomogeneous, the tangent moduli may vary from one material particle
to another.
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The amplitude fields satisfy the partial differential equations and boundary conditions:

!
08 g

— 2 104
oD%

=0 105
Xx (105)
(st = ii) Nie =0 (106)
(D = D) N =0 (107)

The governing equations for the oscillation constitute an eigenvalues problem, with the frequency as
the eigenvalue.
Applying the weak statements (94) and (95) to the amplitude fields, we obtain that

/ i FledV = 22 / palaidV (108)

/ E'gDhdV =0 (109)
Adding these two equations, and using Eqs.(101) and (102), we obtain that
/ (KinLFi/KFJ{L + EKLE'KE'L) dv = 27 /p:vgx;dV (110)

When the tangent moduli K;x;;, and ex 1, are positive-definite, the frequency (2 is real-valued.

Several oscillatory dielectric elastomer actuators have been analyzed!®? %3], The above analysis also
applies when the frequency is set to be zero. Equations (97) and (98) then pose a bifurcation problem:
in the neighborhood of a given state of static equilibrium we look for other states of static equilibrium.
This bifurcation problem has been discussed briefly in connection with the electromechanical instability
in §V. More detailed discussions are available elsewhere[67-681,

6.8. Coexistent Phases

As noted in §V, coexistent phases have been observed experimentally for dielectric elastomers. Such
coexistence has been analyzed by matching regions of two homogeneous states[*% 88 and the transitional
region has been analyzed by using finite element method(7%!. Here we consider coexistent phases in
general terms. The displacement and electric potential are continuous across the phase boundary, but
the deformation gradient, stress, electric field and electric displacement can be discontinuous across the
phase boundary. We next derive the conditions of equilibrium following an established method (8991,

The elastomer, the applied forces and the applied charge together constitute a thermodynamic
system. The free energy of the system includes contributions from all the parts:

Gz/WdV—/Bi:vidV—/Ti:vidA—i—/@qu—i-/@wdA (111)

The free energy varies when the displacement and electric potential vary, and when the phase boundary
moves. In equilibrium, the variation of the free energy associated with any such change must vanish.

§6.1 has considered the variation of the free energy associated with the variations of deformation
and electric potential, while holding the phase boundary immobile. Setting this variation of free energy
to zero, Eq.(79), we obtain field equations in §6.2. In particular, consider an element of the phase
boundary dA (X)), with N (X)) being the unit vector normal to the element. Equation (83) requires
that the traction be continuous across the phase boundary:

(si) Nk =0 (112)

The notation (f) stands for the jump of f across the phase boundary. Similarly, Eq.(85) requires that
the component of the electric displacement normal to the phase boundary be continuous across the
phase boundary:

<DK> Nk =0 (113)
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We next consider the change in the free energy associated with the motion of the phase boundary.
The motion of the phase boundary is tracked in the reference state. When the phase boundary moves
by a displacement da (X)), the element of the phase boundary at material particle X moves to a new
material particle X + N (X)) 0o (X). Associated with the movement of the phase boundary, the free
energy varies by

5G = /<W + (DKEL - siKFiL) NKNL> SadA (114)

The integral extends over the phase boundary. Equation (114) corrects a mistake in Eq.(4.22) in my
previous paper!?1.

When the two phases are in equilibrium, 6G vanishes for arbitrary small movement of the phase
boundary da (X)), so that the jump in front of da (X) in Eq.(114) vanishes:

<W+ (-DKEL_SiKEL) NKNL> =0 (115)
One can readily confirm that Eq.(115) recovers the condition for coexistence for a special casel).

VII. CONCLUDING REMARKS

A large number of examples in biology demonstrate that deformation of soft materials connect
many stimuli to many functions essential to life. Using soft active materials to create soft machines has
emerged as an exciting field of engineering. To participate in advancing the field of soft active materials
and soft machines effectively, mechanicians must retool our laboratories and our software, as well as
adapt our theories. While theories are being developed for diverse soft active materials, this review
focuses on one class of soft active materials: dielectric elastomers. This focus allows us to review the
theory of dielectric elastomers in some depth, within the framework of nonlinear continuum mechanics
and nonequilibrium thermodynamics, while motivating the theory by empirical observations, molecular
pictures and applications. It is hoped that the theory will be used to develop software, study intriguing
phenomena of electromechanical coupling, and aid the design of electromechanical transducers. It is
also hoped that this review of dielectric elastomers will contribute to the rapid development of theories
for diverse soft active materials and soft machines.

References
[1] Mathger,L.M., Denton,E.J., Marshall,N.J. and Hanlon,R.T., Mechanisms and behavioral functions of struc-
tural coloration in cephalopods. Journal of the Royal Society Interface, 2008, 6 (Suppl 2): S149-S163.
[2] Zwieniecki,M.A., Melcher,P.J. and Holbrook,N.M., Hydrogel control of xylem hydraulic resistance in plants.
Science, 2001, 291: 1059-1062.
[3] Pelrine,R., Kornbluh,R., Pei,Q.B. and Joseph,J., High-speed electrically actuated elastomers with strain
greater than 100%. Science, 2000, 287: 836-839.
[4] McKay,T., O’Brien,B., Calius,E. and Anderson,I., Self-priming dielectric elastomer generators. Smart Ma-
terials and Structures, 2010, 19: 055025.
[5] Beebe,D.J., Moore,J.S., Bauer,J.M., Yu,Q., Liu,R.H., Devadoss,C. and Jo,B.H., Functional hydrogel struc-
tures for autonomous flow control inside microfluidic channels. Nature, 2000, 404: 588-590.
[6] Calvert,P., Hydrogels for soft machines. Advanced Materials, 2009, 21: 743-756.
[7] Trivedi,D., Rahn,C.D., Kier, W.M. and Walker,I.D., Soft robotics: biological inspiration, state of the art,
and future research. Applied Bionics and Biomechanics, 2008, 5: 99-117.
[8] Cai,S.Q., Lou,Y.C., Ganguly,P., Robisson,A. and Suo,Z.G., Force generated by a swelling elastomer subject
to constraint. Journal of Applied Physics, 2010, 107: 103535.
[9] Goulbourne,N.C., Mockensturm,E.M. and Frecker,M., A nonlinear model for dielectric elastomer mem-
branes, Journal of Applied Mechanics, 2005, 72: 899-906.
[10] Dorfmann,A. and Ogden,R.W., Nonlinear electroelasticity. Acta Mechanica, 2005, 174: 167-183.
[11] McMeeking,R.M. and Landis,C.M., Electrostatic forces and stored energy for deformable dielectric mate-
rials. Journal of Applied Mechanics, 2005, 72: 581-590.
[12] Suo,Z.G., Zhao,X.H. and Greene,W.H., A nonlinear field theory of deformable dielectrics. Journal of the
Mechanics and Physics of Solids, 2008, 56: 467-286.
[13] Trimarco,C., On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 2009, 204: 193-201.
[14] Sekimoto,K., Thermodynamics and hydrodynamics of chemical gels. Journal of Physics 11, 1991, 1: 19-36.



- 976 - ACTA MECHANICA SOLIDA SINICA 2010

Dolbow,J., Fried,E. and Jia,H.D., Chemically induced swelling of hydrogels. Journal of the Mechanics and
Physics of Solids, 2004, 52: 51-84.

Baek,S. and Srinivasa,A.R., Diffusion of a fluid through an elastic solid undergoing large deformation.
International Journal of Non-linear Mechanics, 2004, 39: 201-218.

Hong,W., Zhao,X.H., Zhou,J.X. and Suo,Z.G., A theory of coupled diffusion and large deformation in
polymeric gels. Journal of the Mechanics and Physics of Solids, 2008, 56: 1779-1793.

Doi,M., Gel dynamics. Journal of the Physical Society of Japan, 2009, 78: 052001.

Chester,S.A. and Anand,L., A coupled theory of fluid permeation and large deformations for elastomeric
materials. Journal of the Mechanics and Physics of Solids, 2010, 58: 1879-1906.

Nemat-Nasser,S. and Li,J.Y., Electromechanical response of ionic polymer-metal composites. Journal of
Applied Physics, 2000, 87: 3321-3331.

Hong,W., Zhao,X.H. and Suo,Z.G., Large deformation and electrochemistry of polyelectrolyte gels. Journal
of the Mechanics and Physics of Solids, 2010, 58: 558-577.

Baek,S. and Srinivasa,A.R., Modeling of the pH-sensitive behavior of an ionic gel in the presence of diffusion.
International Journal of Non-linear Mechanics, 2004, 39: 1301-1318.

Li,H., Luo,R., Birgersson,E. and Lam,K.Y., Modeling of multiphase smart hydrogels responding to pH and
electric voltage coupled stimuli. Journal of Applied Physics, 2007, 101: 114905.

Marcombe,R., Cai,S.Q., Hong,W., Zhao,X.H., Lapusta,Y. and Suo,Z.G., A theory of constrained swelling
of a pH-sensitive hydrogel. Soft Matter, 2010, 6: 784-793.

Cai,S.Q. and Suo,Z.G., Mechanics and chemical thermodynamics of a temperature-sensitive hydrogel.
Manuscript in preparation.

Shankar,R.; Ghosh,T.K. and Spontak,R.J., Dielectric elastomers as next-generation polymeric actuators.
Soft Matter, 2007, 3: 1116-1129.

Carpi,F., Electromechanically active polymers, editorial introducing a special issue dedicated to dielectric
elastomers. Polymer International, 2010, 59:277-278.

Brochu,P. and Pei,Q.B., Advances in dielectric elastomers for actuators and artificial muscles. Macromolec-
ular Rapid Communications, 2010, 31: 10-36.

Gibbs,J.W., Graphical methods in the thermodynamics of fluids. Transactions of the Connecticut Academy,
1973, 2: 309-342 (Available online at Google Books).

Plante,J.S. and Dubowsky,S., Large-scale failure modes of dielectric elastomer actuators. International
Journal of Solids and Structures, 2006, 43: 7727-7751.

Wissler,M. and Mazza,E., Mechanical behavior of acrylic elastomer used in dielectric elastomer actuators.
Sensors and Actuators A, 2007, 134: 494-504.

Kollosche,M. and Kofod,G., Electrical failure in blends of chemically identical, soft thermoplastic elastomers
with different elastic stiffness. Applied Physics Letters, 2010, 96: 071904.

Lochmatter,P., Kovacs,G. and Michel,S., Characterization of dielectric elastomer actuators based on a
hyperelastic film model. Sensors and Actuators A, 2007, 135: 748-757.

Moscardo,M., Zhao,X.H., Suo,Z.G. and Lapusta,Y., On designing dielectric elastomer actuators. Journal
of Applied Physics, 2008, 104: 093503.

Koh,S.J.A., Zhao,X.H. and Suo,Z.G., Maximal energy that can be converted by a dielectric elastomer
generator. Applied Physics Letters, 2009, 94: 262902.

Koh,S.J.A., Keplinger,C., Li,T.F., Bauer,S. and Suo,Z.G., Dielectric elastomer generators: how much energy
can be converted? Transactions on Mechatronics, in press.

Diaz-Calleja.,R. and Llovera-Segovia,P., Energy diagrams and stability restrictions for electroelastic gen-
erators. Journal of Polymer Science B, 2010, 48: 2023-2028.

Gibbs,J.W., A method of geometrical representation of the thermodynamic properties of substances by
means of surfaces. Transactions of the Connecticut Academy, 1973, 2: 382-404 (Available online at Google
Books).

Zhao,X.H., Hong,W. and Suo,Z.G., Electromechanical coexistent states and hysteresis in dielectric elas-
tomers. Physical Review B, 2007, 76: 134113.

Maxwell,J.C., A Treatise on Electricity and Magnetism, Volume 1, Chapter V, Mechanical action between
two electrical systems. Oxford: Oxford University Press, 1873 (Available online at Google Books).
Kofod,G., Sommer-Larsen,P., Kornbluh,R. and Pelrine,R., Actuation response of polyacrylate dielectric
elastomers. Journal of Intelligent Material Systems and Structures, 2003, 14: 787-793.

Kofod,G. and Sommer-Larsen,P., Silicone dielectric elastomer actuators: finite-elasticity model of actuation.
Sensors and Actuators A, 2005, 122: 273-283.

Treloar,L.R.G., The Physics of Rubber Elasticity. Oxford: Oxford University Press, 1975.

Arruda,E.M. and Boyce,M.C., A three-dimensional constitutive model for the large stretch behavior of
rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41: 389-412.



Vol. 23, No. 6 Zhigang Suo: Theory of Dielectric Elastomers - BTT -

Gent,A.N., A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69: 59-61.
Zhao,X. and Suo,Z.G., Electrostriction in elastic dielectrics undergoing large deformation. Journal of Ap-
plied Physics, 2008, 104: 123530.

Wissler,M. and Mazza,E., Electromechanical coupling in dielectric elastomer actuators. Sensors and Ac-
tuators A, 2007, 138: 384-393.

Li,B., Liu,L.W. and Suo,Z.G., Extension limit, polarization saturation, and snap-through instability of
dielectric elastomers. Submitted for publication.

Lochmatter,P., Kovacs,G. and Wissler,M., Characterization of dielectric elastomers based on a visco-
hyperelastic film model. Smart Materials and Structures, 2007, 135: 748-757.

Ha,S.M., Wissler,M., Pelrine,R., Stanford,S., Kovas,G. and Pei,Q., Characterization of electroelastomers
based on interpenetrating polymer networks. Proceedings of SPIE, 2007, 6524: 652408.

Plante,J.S. and Dubowsky,S., On the performance mechanisms of dielectric elastomer actuators. Sensors
and Actuators A, 2007, 137: 96-109.

Zhao,X.H., Koh,S.J.A. and Suo,Z.G., Nonequilibrium thermodynamics of dielectric elastomers. Interna-
tional Journal of Applied Mechanics. Preprint: http://www.seas.harvard.edu/suo/papers/242.pdf.
Silberstein,M.N. and Boyce,M.C., Constitutive modeling of the rate, temperature, and hydration dependent
deformation response of Nafion to monotonic and cyclic loading. Journal of Power Sources, 2010, 195: 5692-
5706.

Zhang,Q.M., Bharti,V. and Zhao,X., Giant electrostriction and relaxor ferroelectric behavior in electron-
irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998, 280: 2101-2104.
Pelrine,R.E., Kornbluh,R.D. and Joseph,J.P., Electrostriction of polymer dielectrics with compliant elec-
trodes as a means of actuation. Sensors and Actuators A, 1998, 64: 77-85.

Ha,S.M., Yuan,W., Pei,Q.B., Pelrine,R. and Stanford,S., Interpenetrating polymer networks for high-
performance electroelastomer artificial muscles. Advanced Materials, 2006, 18: 887-891.

Suo,Z.G. and Zhu,J., Dielectric elastomers of interpenetrating networks. Applied Physics Letters, 2009, 95:
232909.

Shankar,R., Ghosh,T.K. and Spontak,R.J., Electroactive nanostructured polymers as tunable actuators.
Advanced Materials, 2007, 19: 2218-2223.

Keplinger,C., Kaltenbrunner,M., Arnold,N. and Bauer,S., Rontgen’s electrode-free elastomer actuators
without electromechanical pull-in instability. PNAS, 2010, 107: 4505-4510.

Stark,K.H. and Garton,C.G., Electric strength of irradiated polythene. Nature, 1955, 176: 1225-1226.
Zhao,X.H. and Suo,Z.G., Theory of dielectric elastomers capable of giant deformation of actuation. Physical
Review Letters, 2010, 104: 178302.

Zhao,X.H. and Suo,Z.G., Method to analyze electromechanical stability of dielectric elastomers. Applied
Physics Letters, 2007, 91: 061921.

Norris,A.N., Comments on ‘Method to analyze electromechanical stability of dielectric elastomers’. Applied
Physics Letters, 2008, 92: 026101.

Diaz-Calleja,R., Riande,E. and Sanchis,M.J., On electromechanical stability of dielectric elastomers. Ap-
plied Physics Letters, 2008, 93: 101902.

Leng,J.S., Liu,L.W., Liu,Y.J., Yu,K. and Sun,S.H., Electromechanical stability of dielectric elastomers.
Applied Physics Letters, 2009, 94: 211901.

Xu,B.X., Mueller,R., Classen,M. and Gross,D., On electromechanical stability analysis of dielectric elas-
tomer actuators. Applied Physics Letters, 2010, 97: 162908.

Dorfmann,A. and Ogden,R.W., Nonlinear electroelastics: incremental equations and stability. International
Journal of Engineering Science, 2010, 48: 1-14.

Bertoldi,K. and Gei,M., Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics
of Solids, 2011, 59: 18-42.

Toupin,R.A., The elastic dielectric. Journal of Rational Mechanics and Analysis, 1956, 5: 849-914.
Eringen,A.C., On the foundations of electroelastostatics. International Journal of Engineering Science,
1963, 1: 127-153.

Tiersten,H.F., On the nonlinear equations of thermoelectroelasticity. International Journal of Engineering
Science, 1971, 9: 587-604.

McMeeking,R.M., Landis,C.M. and Jiminez,M.A., A principle of virtual work for comined electrostatic and
mechanical loading of materials. International Journal of Non-Linear Mechanics, 2007, 42: 831-838.
Bustamente,R., Dorfmann,A. and Ogden,R.W., Nonlinear electroelastostatics: a variational framework.
Zeitschrift fiir Angewandte Mathematik und Physik, 2009, 60: 154-177.

Trimarco,C., On the dynamics of electromagnetic bodies. International Journal of Advances in Engineering
Sciences and Applied Mathematics, 2009, 1: 157-162.




- 978 - ACTA MECHANICA SOLIDA SINICA 2010

Vu,D.K., Steinmann,P. and Possart,G., Numerical modelling of non-linear electroelasticity. International
Journal for Numerical Methods in Engineering, 2007, 70: 685-704.

Zhou,J.X., Hong,W., Zhao,X.H. and Suo,Z.G., Propagation of instability in dielectric elastomers. Interna-
tional Journal of Solids and Structures, 2008, 45: 3739-3750.

Zhao,X.H. and Suo,Z. G., Method to analyze programmable deformation of dielectric elastomer layers.
Applied Physics Letters, 2008, 93: 251902. The user-supplied subroutine for ABAQUS is available at
http://imechanica.org/node/4234.

O’Brien,B., McKay,T., Calius,E., Xie,S. and I.Anderson, Finite element modelling of dielectric elastomer
minimum energy structures. Applied Physics A, 2009, 94: 507-514.

Dorfmann,A. and Ogden,R.W., Nonlinear electroelastic deformations. Journal of Elasticity, 2006, 82: 99-
127.

Mockensturm,E.M. and Goulbourne,N., Dynamic response of dielectric elastomers. International Journal
of Non-Linear Mechanics, 2006, 41: 388-395.

Goulbourne,N.C., Mockensturm,E.M. and Frecker,M.I., Electro-elastomers: large deformation analysis of
silicone membranes. International Journal of Solids and Structures, 2007, 44: 2609-2626.

Zhu,J., Cai,S.Q. and Suo,Z.G., Resonant behavior of a membrane of a dielectric elastomer. International
Journal of Solids and Structures, 2010, 47: 3254-3262.

Zhu,J., Cai,S.Q. and Suo,Z.G., Nonlinear oscillation of a dielectric elastomer balloon. Polymer International,
2010, 59: 378-383.

He, T.H., Zhao,X.H. and Suo,Z.G., Equilibrium and stability of dielectric elastomer membranes undergoing
inhomogeneous deformation. Journal of Applied Physics, 2009, 106: 083522.

He, T.H., Cui,L.L., Chen,C. and Suo0,Z.G., Nonlinear deformation analysis of dielectric elastomer-spring
system. Smart Materials and Structures, 2010, 19: 085017.

Zhu,J., Stoyanov,H., Kofod,G. and Suo.Z.G., Large deformation and electromechanical instability of a
dielectric elastomer tube actuator. Journal of Applied Physics, 2010, 108: 074113.

Willis,J.R., Stability of Media and Structures. http://imechanica.org/node/9292.

De Tommasi,D., Puglisi,Saccomandi,G. and Zurlo,G., Pull-in and wrinkling instabilities of electroactive
dielectric actuators. Journal of Physics D, 2010, 43: 325501.

Eshelby,J.D., The continuum theory of lattice defects. Solid State Physics, 1956, 3: 79-144.
Abeyaratne,R. and Knowles,J.K., On the driving traction acting on a surface of strain discontinuity in a
continuum. Journal of the Mechanics and Physics of Solids, 1990, 38: 345-360.

Suo,Z.G., Motions of microscopic surfaces in materials. Advances in Applied Mechanics, 1997, 33: 193-294.




