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a b s t r a c t

When guest atoms diffuse into a host solid and react, the host may flow inelastically.

Often a reaction can stimulate flow in a host too brittle to flow under a mechanical load

alone. We formulate a theory of reactive flow in solids by regarding both flow and

reaction as nonequilibrium processes, and placing the driving forces for flow and

reaction on equal footing. We construct chemomechanical rate-dependent kinetic

models without yield strength. In a host under constant stress and chemical potential,

flow will persist indefinitely, but reaction will arrest. We also construct chemomechanical

yield surface and flow rule by extending the von Mises theory of plasticity. We show that

the host under a constant deviatoric stress will flow gradually in response to ramp

chemical potential, and will ratchet in response to cyclic chemical potential.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Reactive flow in gases has been extensively studied, particularly in the context of combustion, where the chemistry of
reaction and the mechanics of flow play distinct roles, incorporated in a broadly applicable theory (Williams, 1985).
Reactive flow in liquids, as well as in multi-phase fluid flows, has also received much attention (Oran and Boris, 2005;
Prud’homme, 2010). By comparison, the theory of reactive flow in solids is underdeveloped, even though concurrent
reaction and flow in solids are commonly observed. For example, chemical reactions in cement cause inelastic deformation
(Ulm et al., 2000). As another example, when a metal reacts with oxygen in the environment to form a layer of oxide, much
of the new oxide forms at either the metal/oxide interface or the oxide/environment interface, depending on the relative
rate of diffusion of metal and oxygen through the oxide; however, new oxide also forms inside the existing oxide, causing
the oxide to flow inelastically (Tolpygo and Clarke, 2004; Oh and Thompson, 2011). As a closely related phenomenon,
when an aluminum-containing alloy oxidizes, oxygen preferentially reacts with aluminum, driving aluminum atoms
to diffuse out and changing the composition of the alloy, so that the alloy flows (Suo et al., 2003; El Kadiri et al., 2008).
The phenomenon is analogous to the Kirkendall effect, when different species of atoms mix by diffusion, causing the
movements of inert markers in the direction of diffusion (Smigelskas and Kirkendall, 1947), and dimensional changes
normal to the direction of diffusion (Balluffi and Alexander, 1952). Even a pure metal develops stress and flow during
deposition (Chason et al., 2002) and electromigration (Pharr et al., 2011); one may speak of self-diffusion and self-reaction
when atoms interact with defects such as vacancies, dislocations, and grain boundaries (Balluffi and Seigle, 1955; Suo,
2004; Svoboda and Fischer, 2009). Reactive flow may also be significant in metallic glasses (Huang et al., 2002).

The study of reactive flow in solids has recently come into sharp focus as lithium-ion batteries achieve spectacular
commercial success. Both electrodes of a lithium-ion battery are hosts of lithium. During charge and discharge, lithium
diffuses out of one electrode, migrates across the electrolyte, and then diffuses into the other electrode, while the
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electrodes deform (Benedek and Thackeray, 2002; Huggins, 2009; Zhang, 2011). A high-capacity electrode, silicon, can
absorb a large amount of lithium and swell more than three times its initial volume (Beaulieu et al., 2001; Chan et al.,
2008; Liu et al., 2011; Yu et al., 2012). The deformation is inelastic: after a cycle of lithiation and delithiation, silicon atoms
are rearranged (Zhao et al., 2011a). When a thin film of silicon on a substrate is lithiated and delithiated, the stress in the
film exhibits yield strength (Sethuraman et al., 2010; Soni et al., 2011). Atomistic simulation shows that lithium assists the
flow of silicon by participating in bond breaking and reforming (Zhao et al., 2011c).

For a small enough piece in a host, the rate of evolution of the piece is limited by reaction and flow, rather than by
diffusion within the piece, so that the piece evolves through a sequence of homogeneous states (Fig. 1). Much of the
existing theories of reactive flow in solids have assumed that, in each small piece of the host, reaction has reached
equilibrium, while flow is a nonequilibrium process (Stephenson, 1988; Zhao et al., 2011b; Bower et al., 2011; Cui et al.,
2012). This assumption has been made despite that both reaction and flow in solids involve similar atomic movements.
The assumption precludes a powerful coupling between reaction and flow: when local chemical equilibrium has not been
reached, the driving force for reaction breaks and forms atomic bonds, enabling the host to flow under a low enough
deviatoric stress without fracture.

Here we formulate a theory that regards both flow and reaction as nonequilibrium processes, placing driving forces for
flow and reaction on equal footing (Fig. 1). Flow changes the shape of the electrode, preserves its composition and volume,
and is driven by the deviatoric stress. By contrast, reaction changes the composition and volume of the electrode, and is
driven by a combination of the mean stress and the chemical potential of lithium in the environment. Both flow and
reaction are mediated by breaking and forming atomic bonds.

Following a common practice in formulating a field theory, we regard a host as a sum of many small pieces (Fig. 1).
Each small piece evolves by flow and reaction through a sequence of homogeneous states. Different pieces communicate
through the compatibility of deformation, balance of forces, conservation of the number of guest atoms, and kinetics of
diffusion. We will treat infinitesimal deformation in this paper, and will extend the theory to finite deformation elsewhere
(Brassart and Suo, 2012). We will devote the body of this paper to the homogeneous states of an individual small piece,
and will outline the theory of inhomogeneous states in the host as a whole in Appendix A. The concurrent reaction and
flow satisfies a thermodynamic inequality (Section 2). A rheological model is formulated under two assumptions: reaction
and flow are both nonequilibrium processes (Section 3), and the inelastic volumetric change of the host is entirely due to
the uptake of guest atoms (Section 4). The free energy of the host is taken to be a function of the elastic strain and the
concentration of the host atoms (Section 5). Under the constraint of the thermodynamic inequality, we construct kinetic
models of reactive flow in solids. For a rate-dependent kinetic model without yield strength, for a host under constant
deviatoric stress and chemical potential, flow will persist indefinitely, but reaction will arrest (Sections 6 and 7). For a rate-
independent kinetic model with yield strength, a host under a constant deviatoric stress will deform gradually in response
to a ramp chemical potential, and will ratchet in response to a cyclic chemical potential (Section 8).

The theory is related to that of reactions in cement (Ulm et al., 2000), of reactions in oxides (Loeffel and Anand, 2011),
of poroviscoplasticity in soils (Rice, 1977; Viesca et al., 2008), and of poroviscoelasticity in elastomeric gels (Hu and Suo,
2012). While these theories—and ours—share broad considerations of thermodynamics, kinetics and mechanics, specific
rheological behavior can be very different for various classes of materials and types of reactions. For example, under a
constant load, a metal can creep indefinitely, while inelastic deformation in elastomeric gels will arrest. A reaction in a
condensed phase may be modeled as two distinct processes: insertion of the guest atoms into the host, and reaction
between the guest atoms and other species of atoms (de Groot and Mazur, 1984; Loeffel and Anand, 2011). The extent of
each process is characterized by a distinct variable. This approach can be applied to the host–guest reaction (Appendix B).
In the body of this paper, however, we develop a theory that regards insertion and reaction as one process, and
characterize the extent of the process by a single variable: the concentration of the guest atoms in the host. The resulting
theory takes a simpler form.
Fig. 1. Guest atoms diffuse into a host and react, while the host flows. The host is a sum of many small pieces. Each small piece evolves through a

sequence of homogeneous states by flow and reaction. Different small pieces of the host communicate through the compatibility of deformation, balance

of forces, conservation of the number of guest atoms, and kinetics of diffusion of the guest atoms.



Fig. 2. Subject to mechanical forces and immersed in a reservoir of guest atoms, a host evolves by flow and reaction through a sequence of homogeneous

states. (a) In the reference state, subject to no stress and in contact with a reservoir in which the chemical potential of guest atoms is m0, the host is a unit

cube and contains C0 number of guest atoms. (b) In the current state, subject to stress sij and in contact with a reservoir in which the chemical potential

of guest atoms is m , the host deforms into a parallelepiped of strain eij and contains C number of guest atoms.
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2. Nonequilibrium thermodynamics of homogeneous states

Consider a setup of a host, a reservoir, a species of guest atoms, and a set of applied forces (Fig. 2). The host and the
reservoir may each contain many species of atoms, but can only exchange a single species of atoms: the guest atoms. The
host is so small that its rate of evolution is limited by reaction and flow, rather than by diffusion within the host. The host
evolves by reaction and flow through a sequence of homogeneous states. In the reference state, the host is a unit cube
containing C0 number of guest atoms and is subject to no applied forces, while the chemical potential of the guest atoms in
the reservoir is m0. The host and the reservoir equilibrate with each other in the reference state, but not in the current
state. In the latter, the host is subject to a state of stress sij, while the chemical potential of the guest atoms in the reservoir
is m. The host contains C number of guest atoms, and deforms into the shape of a parallelepiped by a state of strain eij

relative to the reference state. We restrict our analysis to isothermal processes, and do not list temperature as a variable.
When the host is subject to fixed stresses sij and in contact with the reservoir in which the chemical potential of the

guest atoms is fixed at m, one can measure the strain eij and the concentration C as a function of time. This experiment can
be carried out without knowing any process inside the host. Thus, the strain eij, stress sij, concentration C, and chemical
potential m are external variables: they can be represented by changes external to the host. The stress can be represented
by hanging weights. In the current state, when the host deforms by a small amount deij, the potential energy of the weights
changes by �sijdeij. The chemical potential of the guest atoms in the reservoir can be varied by changing the composition
of the reservoir. Associated with the transfer of dC number of guest atoms from the reservoir to the host, the Helmholtz
free energy of the reservoir changes by �ðm�m0ÞdC.

These external variables appear in a thermodynamic inequality. Let W be the Helmholtz free energy of the host in the
current state minus the Helmholtz free energy of its constituents in the reference state. (The constituents in the reference
state consist of the host with C0 number of guest atoms, as well as ðC�C0Þ number of guest atoms in the reservoir). The
host, the hanging weights and the reservoir together form a composite thermodynamic system. The composite exchanges
energy with the rest of the world by heat, but not by work. The composite conserves all species of atoms. The Helmholtz
free energy of the composite is the sum of the Helmholtz free energy of the host, the potential energy of the hanging
weights, and the Helmholtz free energy of the reservoir. When the composite is in a state of equilibrium, thermodynamics
requires that the change of the Helmholtz free energy of the composite should vanish. When the composite is not in a state
of equilibrium, however, thermodynamics requires that the change of the Helmholtz free energy of the composite should
not increase. These statements are summarized as

dW�sijdeij�ðm�m0ÞdCr0: ð1Þ

The variation means the value of a quantity at a time minus that at a slightly earlier time. As usual in thermodynamics, this
inequality involves the direction of time, but not the duration of time.
3. Reaction and flow are both nonequilibrium processes

To specify a nonequilibrium state of the host, we identify a set of internal variables by describing a rheological model.
The total strain of the host, eij, is taken to be the sum of an elastic strain ee

ij and inelastic strain ei
ij:

eij ¼ ee
ijþe

i
ij: ð2Þ
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The elastic strain represents distortion of atomic bonds with no rearrangement of atoms. The inelastic strain represents
rearrangements of atoms, including both the inelastic flow and the uptake of additional guest atoms. The six components
of the inelastic strain are internal variables that characterize dissipative processes in the host.

The Helmholtz free energy of the host is taken to depend only on the elastic strains and the concentration:

W ¼Wðee,CÞ: ð3Þ

Thus, the Helmholtz free energy is a function of seven independent variables. We could also make the Helmholtz free
energy depend on the inelastic strains ei

ij to represent, for instance, the effect of a back stress; see a recent review of
plasticity theories by Chaboche (2008). Here we adopt (3) as an assumption of the rheological model. According to
differential calculus, when the independent variables change by dee

ij and dC, the Helmholtz free energy changes by
dW ¼ ð@W=@ee

ijÞde
e
ijþð@W=@CÞdC.

Under assumptions (2) and (3), the thermodynamic inequality (1) becomes

sij�
@Wðee,CÞ

@ee
ij

" #
dee

ijþsijdei
ijþ m�m0�

@Wðee,CÞ

@C

� �
dCZ0: ð4Þ

The inequality (4) holds for the thirteen independent variations, dee
ij, dei

ij and dC. When the inelastic strain and
concentration are held fixed, dei

ij ¼ 0 and dC¼0, the host can still deform elastically, dee
ija0. Under these conditions,

and assuming that the host equilibrates with the applied loads, (4) reduces to an equality for arbitrary small changes dee
ij,

giving that

sij ¼
@Wðee,CÞ

@ee
ij

: ð5Þ

This equation is the condition of partial equilibrium with respect to the elastic strain, and results from as yet another
assumption of the rheological model. Alternatively, one could consider a stress relaxing in time (Ziegler and Wehrli, 1987).
Such behavior would appear in the Kelvin–Voigt model for a viscoelastic material. Here we do not account for this
behavior, and will adopt (5).

The thermodynamic inequality (4) now reduces to

sijdei
ijþ m�m0�

@Wðee,CÞ

@C

� �
dCZ0: ð6Þ

This inequality holds for seven independent variations dei
ij and dC that measure the extent of flow and reaction. The

inequality also identifies the thermodynamic driving forces: the stress sij drives inelastic deformation, and the quantity
m�m0�@Wðee,CÞ=@C drives reaction. Recall that m is the chemical potential of the guest atoms in the reservoir in the current
state, and m0 is the chemical potential of the guest atoms in the reservoir in the reference state, so that m�m0 represents
the chemical load applied on the host associated with the change of the reservoir. The quantity @Wðee,CÞ=@C defines the
chemical potential of the guest atoms in the host in the current state (Gibbs, 1876, 1878). Consequently, the scalar
m�m0�@Wðee,CÞ=@C is the unbalanced chemical potential that drives reaction. When m�m0�@Wðee,CÞ=@C40, the chemical
potential of the guest atoms in the reservoir exceeds that in the host, motivating the guest atoms to move from the
reservoir to the host. When m�m0�@Wðee,CÞ=@Co0, the chemical potential of the guest atoms in the reservoir is below that
in the host, motivating the guest atoms to move from the host to the reservoir.

4. Inelastic volumetric change of the host is entirely due to the uptake of the guest atoms

In a metal, the volumetric change is caused by elasticity, and inelastic volumetric change is negligible (Bridgman, 1923).
We now generalize this observation by assuming that the host flows without inelastic volumetric change when the
concentration is fixed. The volumetric strain is ekk and the deviatoric strain is eij ¼ eij�ekkdij=3. Similar definitions hold for
elastic and inelastic strains: ee

ij ¼ e
e
ij�e

e
kkdij=3 and ei

ij ¼ e
i
ij�e

i
kkdij=3. As a generalization of the classical theory of plasticity,

we assume that the inelastic volumetric strain is a function of the concentration of the inserted atoms:

ei
kk ¼ FðCÞ: ð7Þ

Under this assumption, inelastic volumetric strain represents the insertion of atoms, and the deviatoric inelastic strains
represent the flow of atoms. An assumption similar to (7) has been commonly used to describe polymeric gels (Hong et al.,
2008; Cai and Suo, 2012). However, the elastic volumetric strain in polymer gels is typically negligible, so that the total
volumetric strain is assumed to be a function of the concentration. When the concentration changes by dC, the inelastic
volumetric strain changes by dei

kk ¼OdC, where the slope of the function O¼ dFðCÞ=@C is the inelastic change in the
volume of the host associated with inserting one guest atom.

This assumption (7) places a constraint between the inelastic volume change and the number of atoms in the host.
Under the constraint, the thermodynamic inequality (6) becomes

sijdei
ijþzOdCZ0, ð8Þ
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where

z¼ smþ
m�m0

O
�
@Wðee,CÞ

O@C
: ð9Þ

The mean stress is defined by sm ¼ skk=3 and the deviatoric stress by sij ¼ sij�smdij. Inequality (8) identifies the deviatoric
stress as the driving for deviatoric inelastic strain, and zO as the driving force for reaction. The contribution of the mean
stress stems from the constraint (7). The pressure-like quantity z is known as the osmotic pressure.

The thermodynamic inequality (8) can be interpreted in geometric terms. The six independent components of ðs,zÞ form
a vector in a linear space of six dimensions. In the same space, the six independent components of ðdei,OdCÞ form another
vector. The bilinear form sijdei

ijþzOdC is the inner product of the two vectors. Inequality (8) requires that the angle
between the vectors ðs,zÞ and ðdei,OdCÞ be acute.

Setting the driving force for reaction to zero, z¼ 0, we recover m¼ m0�Osmþ@Wðee,CÞ=@C. That is, the osmosis between
the host and the reservoir is balanced by the mean stress in the host. This assumption of the partial equilibrium with
respect to insertion is commonly adopted in the literature, for instance in the context of lithium-ion batteries (Zhao et al.,
2011b; Bower et al., 2011; Bhandakkar and Johnson, 2012; Cui et al., 2012; Sheldon et al., 2012). The equilibrium chemical
potential recovers the well-known expression of Larché and Cahn (1973). Assuming chemical equilibrium unrealistically
restricts the power of the reaction to stimulate flow. In the present work, we do not assume chemical equilibrium. Because
both inelastic deformation and reaction involve similar atomic rearrangement, to be consistent, in this paper we assume
that reaction and inelastic deformation are both nonequilibrium processes.

The thermodynamic inequality (8) is satisfied by prescribing a kinetic model to co-evolve reaction and flow. A general
kinetic model assumes that the rates of inelastic deviatoric strain and concentration are functions of the thermodynamic
driving forces:

dei
ij

dt
¼ f ijðs,zÞ,

dC

dt
¼ gðs,zÞ: ð10Þ

The kinetic equations must satisfy the inequality (8) for independent variations of the six components of the inelastic
strain and the concentration. The assumption (7) provides a constraint, which can also be regarded as a special kinetic
equation. The kinetic model couples flow and reaction: both mechanical and chemical driving forces affect the rates of
inelastic deviatoric strains and concentration.

The rheological model is pictured with an arrangement of springs and dashpots (Fig. 3). The cartoons illustrate a
fundamental difference between flow and reaction: flow is represented by a spring and dashpot in series (the Maxwell
model), while reaction is represented by a spring and a dashpot in parallel (the Kelvin model). Assuming a rate-dependent
kinetic model with no yield strength, a host under constant stress and chemical potential will flow indefinitely, but
reaction will arrest. The chemical load ðm�m0Þ=Oþsm is shared by a spring and a dashpot in parallel. The force on the
dashpot is the osmotic pressure z, and vanishes at equilibrium. The force on the spring is @Wðee,CÞ=O@C, and is the change
in the free energy of the host associated with the uptake of the guest atoms.
Fig. 3. The rheological model assuming that the inelastic volumetric change of the host is entirely due to the uptake of the guest atoms. (a) The deviatoric

strain (flow) is driven by the deviatoric stress, and is represented by a spring and a dashpot in series. (b) The elastic volumetric strain is driven by the

mean stress, and is represented by a spring. (c) The inelastic volumetric strain (reaction) is driven by smþðm�m0Þ=O, and is represented by a spring and a

dashpot in parallel. The springs and dashpots are identified with modulus and viscosity of a linear rheological model, but the springs and dashpots can

also be nonlinear. Interactions between different types of responses are not represented in these cartoons.
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5. Taylor expansions

This section specifies the forms of the functions FðCÞ and Wðee,CÞ assuming that the current state is close to the
reference state in that ðC�C0Þ and ee

ij are small. Expand (7) into the Taylor series to the leading order, we obtain that

ei
kk ¼OðC�C0Þ, ð11Þ

where O¼ dFðCÞ=dC is calculated at C ¼ C0.
We next expand the free-energy function Wðee,CÞ around the reference state, ee

ij ¼ 0 and C ¼ C0. Recall that the reference
state is a state of equilibrium and that Wð0,C0Þ ¼ 0. Consequently, the leading order terms of the function Wðee,CÞ are
collectively a quadratic form of ee

ij and ðC�C0Þ. Here we further assume that the host is isotropic, so that the function
Wðee,CÞ depends on the elastic strain tensor through its invariants. The only distinct invariants of the elastic strain tensor
quadratic in the components are ee

ije
e
ij and ðee

kkÞ
2. Consequently, the most general expression for the free-energy function for

the linear, isotropic host is the quadratic form

W ¼ Gee
ije

e
ijþ

1

2
Kðee

kkÞ
2
þ

1

2
HO2
ðC�C0Þ

2
þMOee

kkðC�C0Þ: ð12Þ

Here G is the shear modulus, K the bulk modulus, H the chemical modulus, and M the chemomechanical modulus. While G,
K, H are represented by the elastic constants of the springs in the rheological model (Fig. 3), M cannot be so represented.
The reference state is taken to be a stable state of equilibrium, so that the quadratic form (12) is positive-definite, requiring
G40, K40, H40 and KH4M2. The sign of M is unrestricted.

Inserting the free-energy function (12) into (5), we obtain that

sij ¼ 2Gee
ij, ð13Þ

sm ¼ Kee
kkþMOðC�C0Þ: ð14Þ

In a linear, isotropic model, the deviatoric stress is independent of the change in the concentration. The shear modulus G

relates the deviatoric stress and the deviatoric elastic strain. The bulk modulus K relates the mean stress to the volumetric
elastic strain. The chemomechanical modulus M relates the mean stress to the change in the concentration. Eq. (14)
indicates that, even during free swelling ðsm ¼ 0Þ, a change in the concentration will induce an elastic volumetric strain.

Rearranging (14), we obtain that ee
kk ¼ ½sm�MOðC�C0Þ�=K. The net volumetric strain, ekk ¼ ee

kkþe
i
kk, is given by

ekk ¼
sm

K
þ 1�

M

K

� �
OðC�C0Þ: ð15Þ

This equation expresses the total volumetric strain in terms of the mean stress and the change in concentration. A tensile
mean stress promotes volumetric expansion. The insertion of guest atoms promotes volumetric expansion if MoK , but
promotes volumetric contraction if M4K. For example, for lithium cobalt oxide, a material commonly used as cathodes in
lithium-ion batteries, the insertion of lithium atoms causes the host to contract in volume (Reimers and Dahn, 1992).

Inserting (12) into (9), and using ee
kk ¼ ½sm�MOðC�C0Þ=K , we obtain that

z¼ 1�
M

K

� �
smþ

m�m0

O
� H�

M2

K

 !
O C�C0ð Þ: ð16Þ

This equation expresses the driving force for reaction in terms of the external variables: the mean stress, the chemical
potential, and the concentration. The reaction is promoted by an increase in the chemical potential of the guest atoms in
the reservoir, but is resisted by an increase of the concentration of the guest atoms in the host. A tensile mean stress
promotes the reaction if MoK , but resists the reaction if M4K. When M¼0, within the rheological model (Fig. 3c),
ðm�m0Þ=Oþsm is equivalent to the net stress applied on the parallel spring and the dashpot, z is the stress applied on the
dashpot, and OHðC�C0Þ the stress applied on the spring.

6. Linear kinetic model

The kinetic model (10) involves six independent functions, each depending on six independent variables. A model of
this generality is unlikely to be useful in practice. We now explore more restricted forms of kinetic equations by appealing
to the analogy with historically successful examples. We begin with a linear kinetic model. The combination of linearity
and isotropy requires that deviatoric and volumetric responses be decoupled

dei
ij

dt
¼

sij

2Ĝ
, ð17Þ

OdC

dt
¼

z
Ĥ

, ð18Þ

where Ĝ is the shear viscosity, and Ĥ dictates the rate of reaction. The thermodynamic inequality (8) is satisfied by setting
Ĝ40 and Ĥ40. This linear kinetic model is illustrated with two examples as follows.
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6.1. A host subject to a chemical load alone

A unit cube of the host contains C0 number of guest atoms, and is in equilibrium with a reservoir in which the chemical
potential of guest atoms is m0. The host is then suddenly put in contact with another reservoir in which the chemical
potential of guest atoms is at a higher value m. In the absence of applied stress, the host absorbs additional guest atoms and
swells freely. The swelling is homogeneous and isotropic. In the short-time limit, reaction has not started, and Cð0Þ ¼ C0.
In the long-time limit, the reaction arrests, and the driving force for reaction vanishes, z¼ 0 in (16), giving

Cð1Þ ¼ C0þ
m�m0

O2
ðH�M2=KÞ

: ð19Þ

Setting sm ¼ 0 and inserting (16) into (18), we obtain that

dC

dt
¼

1

Ĥ

m�m0

O2
� H�

M2

K

 !
ðC�C0Þ

" #
: ð20Þ

Solving this ordinary differential equation, we obtain the evolution of the concentration in time

CðtÞ�C0

Cð1Þ�C0
¼ 1�exp �

HK�M2

ĤK
t

 !
ð21Þ

This solution identifies the relaxation time for the reaction as ĤK=ðHK�M2
Þ. In the special case when M¼0, the relaxation

time reduces to Ĥ=H. Setting sm ¼ 0 in (15), we note that the net strain also approaches the state of equilibrium in a similar
way.

When the swelling is constrained by fixed net strains in all directions, the mean stress will evolve along with the
concentration towards a constant asymptotic value according to (14) and (18). In the long-time limit, the concentration
will in general differ from its free swelling counterpart (19). By contrast, when the constraint is not hydrostatic, the
deviatoric and volumetric components of the stress are coupled. Stress will build up initially and then relax to zero. In the
long-time limit, the concentration and total volume change coincide with those obtained in the free swelling case.
6.2. A host under mechanical load alone

As a second example, we analyze the commonly performed creep test. This example highlights a fundamental
difference between flow and insertion: under a fixed load, the flow will persist, while reaction will arrest. The host is in
contact with a reservoir in which the chemical potential of guest atoms is fixed at m0. A dead load is suddenly applied to
the host, and a state of stress sij is fixed subsequently. The elastic deviatoric strain is constant and given by Eq. (13).
Integration of the kinetic model (17) in time together with (13) yields

eij ¼
sij

2G
1þ

Gt

Ĝ

� �
: ð22Þ

Under the fixed stress, the inelastic deviatoric strain persists and evolves linearly in time, with a characteristic time Ĝ=G.
Observe that this time scale of deviatoric flow differs from that of swelling.

By contrast, the reaction arrests in the long-time limit. Setting m¼ m0 and, in chemical equilibrium z¼ 0, we obtain that

Cð1Þ ¼ C0þ
K�M

KH�M2

sm

O
: ð23Þ

Thus, even when the chemical potential of the guest atoms in the reservoir is fixed at m0, the applied stress changes the
number of guest atoms in the host. Under a tensile mean stress, the host absorbs guest atoms if MoK , and desorbs guest
atoms if M4K. The opposite occurs when the mean stress is compressive. The kinetic model (18) reduces to

dC

dt
¼

1

Ĥ
1�

M

K

� �
sm

O
� H�

M2

K

 !
ðC�C0Þ

" #
: ð24Þ

The equation looks similar to (20), and its solution is also of the form (21), with Cð1Þ now given by (23).
The net volume change at equilibrium can be directly computed from (15) and (23), giving

ekkð1Þ ¼
sm

K
1þ

K�Mð Þ
2

KH�M2

" #
: ð25Þ

In the case where M¼ K , the volume change results only from elasticity, as expected. In both cases M4K and MoK , the
inelastic volumetric strain is positive under a tensile mean stress.



Fig. 4. The six independent components of ðs,zÞ are collectively regarded as a vector in a linear space of six dimensions. In this space, the condition

Q ðs,zÞ ¼ const is a surface, and the six components of ðdei ,OdCÞ also form a vector.
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7. Nonlinear rate-dependent kinetic model without yield strength

To construct a family of nonlinear kinetic models, following Rayleigh (1871), we introduce a dissipation function Q s,zð Þ,
and postulate that the inelastic strain derives from the dissipation function as

dei
ij

dt
¼
@Q ðs,zÞ
@sij

,
OdC

dt
¼
@Q ðs,zÞ
@z

: ð26Þ

This kinetic model involves a single scalar as a function of the six independent variables, Q ðs,zÞ. Relations (26) may be
justified in terms of some macroscopic postulates (e.g., Drucker, 1951) and microscopic models (e.g., Rice, 1971), but other
macroscopic postulates and microscopic models can be constructed leading to kinetic models that do not obey (26). Here
we take (26) as an assumption of the rheological model, namely, a compromise between flexibility to fit experimental data
and convenience to develop a mathematical theory.

The kinetic model (26) is commonly interpreted in geometric terms (Fig. 4). The condition Q ðs,zÞ ¼ constant is a surface
in the six dimensional space, and the partial derivatives @Q ðs,zÞ=@sij and @Q ðs,zÞ=@z are the six components of a vector
normal to the surface. Consequently, (26) makes ðdei,OdCÞ a vector normal to the surface. Thermodynamic inequality (8)
requires that the angle between the vector ðs,zÞ and the vector normal to the surface Q ðs,zÞ ¼ constant be acute. This
geometric interpretation helps to visualize the restriction of the thermodynamic inequality imposed on the form the
dissipation function Q ðs,zÞ. For example, a sufficient (but not necessary) condition for inequality (8) to be satisfied is to
choose Q ðs,zÞ to be convex, non-negative and such that Q ð0,0Þ ¼ 0.

The dissipation function takes a considerably simpler form for an isotropic material. For an isotropic host, the
dissipation function Q depends on the tensor sij only through its invariants J2 ¼ sijsij=2 and J3 ¼ sijsjkski=3, so that

Q ¼ Q ðJ2,J3,zÞ: ð27Þ

Following von Mises (1928), we further assume that Q does not depend on J3. Unlike von Mises, we do retain the
dependence on z to account for reaction. Assuming that small deviation from equilibrium arises independently from the
sign of z, it follows that Q must be an even function of z. Write the dissipation function as

Q ¼ Q ðJ2,bÞ: ð28Þ

where b¼ z2=2. The kinetic model (26) becomes

dei
ij

dt
¼
@Q ðJ2,bÞ
@J2

sij, ð29Þ

OdC

dt
¼
@Q ðJ2,bÞ
@b

z: ð30Þ

This nonlinear kinetic model generalizes the linear kinetic model (17) and (18), with the identification

1

2Ĝ
¼
@Q ðJ2,bÞ
@J2

,
1

Ĥ
¼
@Q ðJ2,bÞ
@b

: ð31Þ

Now both shear and bulk viscosity are functions of the two scalars, ĜðJ2,bÞ and ĤðJ2,bÞ. The thermodynamic inequality (8) is
satisfied if and only if Ĝ40 and Ĥ40. This condition is equivalent to requiring that Q ðJ2,bÞ be an increasing function with
respect to both variables.

As a narrower generalization of the work of von Mises, we may assume that the dissipation function Q depends on ðs,zÞ
through a single scalar—a quadratic form of the six-dimensional vector ðs,zÞ. For an isotropic host, the most general
quadratic form of ðs,zÞ is a linear combination of sijsij and z2. Thus, define a scalar measure of the driving forces for flow and
reaction

te ¼
1

2
sijsijþqz2

� �1=2

, ð32Þ

where q is a dimensionless constant. When q¼0, the scalar te reduces to the equivalent shear stress of von Mises (1913).
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We now assume that the dissipation function Q depends on the driving force ðs,zÞ through the scalar te

Q ¼Q ðteÞ: ð33Þ

Inserting (33) into (26), we obtain that

dei
ij

dt
¼

sij

2ĜðteÞ
, ð34Þ

OdC

dt
¼

qz
ĜðteÞ

, ð35Þ

where ĜðteÞ ¼ te=ðdQ=dteÞ is the shear viscosity. The thermodynamic inequality (8) is satisfied if ĜðteÞ40 and q is a
positive number. This kinetic model couples flow and reaction through te. In particular, a chemical driving force can make
deviatoric flow faster if ĜðteÞ is a decreasing function, or slower if ĜðteÞ is an increasing function. Similarly, a shear stress
can accelerate or decelerate the reaction. These two types of behavior correspond to shear-thinning and shear-thickening,
respectively, in rheology (Barnes et al., 1989).

This kinetic model is fully determined by two items: the constant q indicates the relative contributions of the
chemomechanical stress and the deviatoric stress to the scalar measure of the driving force, and the scalar function ĜðteÞ

gives the nonlinear viscosity. Both items can be determined experimentally. As an example, suppose we set up an
experiment under pure shear stress t and in chemical equilibrium, z¼ 0, and measure the rate of the inelastic engineering
shear strain giðtÞ as a function of the shear stress

dgi

dt
¼ f ðtÞ: ð36Þ

Under this loading condition, s12 ¼ t, ei
12 ¼ gi=2, and the scalar measure of the driving force reduces to te ¼ t. A comparison

between (34) and (36) gives the shear viscosity

ĜðteÞ ¼ te=f ðteÞ: ð37Þ

This shear viscosity can be inserted into (34) and (35) to obtain the rate of deviatoric inelastic strain rate and
concentration. Eq. (35) uses the data determined from the pure-shear test to determine the reaction kinetics, except for
the constant q. The constant can be determined by another experiment, for example, free swelling. For a given host–guest
system, such a prediction can be validated or falsified by experiments. At this writing, no experiments of this kind are
available.
8. Rate-independent kinetic model with yield strength

When a thin film of silicon constrained on a substrate is lithiated, the stress in the plane of the layer is built up to a
certain level even when the rate of lithiation is low (Sethuraman et al., 2010). This plastic behavior has also been noted in
ab initio atomistic simulation (Zhao et al., 2011c). Here we propose a rate-independent kinetic model of reactive flow by
including both the deviatoric stress and the driving force for reaction. We then apply this model to analyze free swelling,
stressed swelling, and chemomechanical ratcheting.
8.1. Chemomechanical yield condition and chemomechanical flow rule

As mentioned in Introduction, experimental observations suggest that a reaction may stimulate flow in a host too
brittle to flow under mechanical load alone. Here we propose a rate-independent kinetic model by generalizing the von
Mises (1913, 1928) theory of plastic potential, which shares similar properties as the Rayleigh dissipation function. Thus,
we will still write the plastic potential as Q ðs,zÞ. A set of the driving forces ðs,zÞ is a point in the six-dimensional space,
and the chemomechanical yield condition is Q ðs,zÞ ¼ 0. In general the yield surface may change its shape and its location
due to microstructure rearrangements and change in concentration. When the driving forces ðs,zÞ correspond to a point
inside the surface, no additional reaction and flow take place, but the host can deform elastically. When the forces reach
the yield surface, reaction advances by dC, and the inelastic deviatoric strain changes by dei

ij. The increments ðdei
ij,OdCÞ is

also a vector in the six-dimensional space. As an extension of the work of von Mises (1928), we postulate that the vector
ðdei

ij,OdCÞ is in the direction normal to the yield surface

dei
ij ¼ l

@Q ðs,zÞ
@sij

, OdC ¼ l
@Q ðs,zÞ
@z

: ð38Þ

This flow rule is analogous to the time-dependent kinetic model (26). The amplitude of the vector ðdei
ij,OdCÞ, known as the

plastic multiplier l, is not specified in the rate-independent plastic model; rather, it is determined from the boundary
conditions by requiring that the forces cannot leave the yield surface during plastic flow (i.e., the consistency condition).
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As a particular example of the plastic potential for an isotropic material, we extend the theory of von Mises (1913) to
account for the driving force for reaction by assuming

Q ¼
1

2
sijsijþqz2

�t2
Y , ð39Þ

where tY is the yield strength under the pure-shear condition. In general, tY varies with concentration and inelastic
strains. However, as we assumed small changes in concentration, we will fix the yield strength at its reference value for
C ¼ C0. Contrarily to von Mises theory, the yield function (39) depends on the first invariant sm through the driving force z.
Based on similar argument as in the previous section, we assumed the yield function depends on a quadratic form of z.
Hence, the criterion Q ðs,zÞ ¼ 0 is insensitive to the sign of z.

Using (39), the yield condition Q s,zð Þ ¼ 0 becomes

1

2
sijsijþqz2

¼ t2
Y : ð40Þ

The yield strength tY is determined when the host is subject to pure shear condition in the absence of chemical driving
force. Under the condition of insertion without stress, the yield condition on the driving force for reaction is deduced from
(40) as z¼ zY � tY=

ffiffiffi
q
p

, where z is given by (9) and is computed for vanishing mean stress sm. The yield surface is
represented by an ellipse in the plane spanned by ðz,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sijsij=2

p
Þ.

Introducing the plastic potential (39) into the flow rule (38), we obtain that

dei
ij ¼ lsij ð41Þ

OdC ¼ 2qlz ð42Þ

According to (41), inelastic deviatoric strains develop under the condition that shear stresses are applied. Moreover, the
ratio of inelastic deviatoric strain increments to the corresponding deviatoric stresses are identical and given by the plastic
multiplier. Eq. (41) is similar in form to the classical flow rules of J2 plasticity (Reuss, 1930). On the other hand, volumetric
inelastic strains develop under the condition that chemo-mechanical loading is applied. A positive chemomechanical
stress leads to insertion, and a negative one to extraction. Eliminating the multiplier from (41) and (42), we obtain the
expression of the inelastic deviatoric strain increment as a function of the shear stress and the increment of concentration

dei
ij ¼

sij

2qz
OdC: ð43Þ

Relation (43) expresses the constraint introduced by the assumption of normality of the flow rule. Note that Eq. (43) holds
under the condition that z (and hence dC) is non-zero. The total strain is the sum of the elastic and inelastic strains

deij ¼
dsij

2G
þ

sij

2qz
OdC, ð44Þ

dekk ¼
dsm

K
þ 1�

M

K

� �
OdC: ð45Þ

8.2. Free swelling

A host is in contact with a reservoir and subject to no stress. Initially, the chemical potential of the guest atoms in the
reservoir is set at value of the reference state, m¼ m0, and the concentration of the guest atoms in the host is C ¼ C0.
Subsequently, the chemical potential of the guest atoms in the reservoir is ramped up. The driving force z (9) for reaction
under stress-free condition is given by

z¼
m�m0

O
� H�

M2

K

 !
OðC�C0Þ: ð46Þ

The yield condition is z¼ tY=
ffiffiffi
q
p

. As long as the chemical potential has not reached a certain threshold, m�m0oOtY=
ffiffiffi
q
p

,
the host cannot yield, and the concentration remains unchanged. As soon as the yield criterion is reached: m�m0 ¼OtY=

ffiffiffi
q
p

,
the host yields, and the concentration at any subsequent time is determined from the condition that the driving force
cannot leave the yield surface, z¼ tY=

ffiffiffi
q
p

, so that,

C ¼ C0þ
1

OðH�M2=KÞ

m�m0

O
�
tYffiffiffi

q
p

� �
ð47Þ

Eq. (47) indicates that the concentration of the guest atoms in the host increases linearly with the chemical potential.
The yield strength reduces the amount of insertion, as compared to the amount of insertion without yield strength (19).
In principle, this experiment can be used to measure the value of q by determining the yield condition of the chemical
potential.
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Note that it is necessary to increase the value of the chemical load as yielding proceeds in order to keep satisfying the
yield criterion. This feature differs from classical von Mises perfect plasticity, where a constant state of stress on yield leads
to indefinite plastic flow. Here, yield requires an increase in the applied loading, due to the presence of a back stress given
by the second term in the right-hand side of expression (46) of the driving force for reaction z. The magnitude of the back
stress increases with the variation of concentration compared to the reference state.

When swelling is constrained, stress builds up within the host, in turn affecting the condition for further yielding. If the
constraint is purely hydrostatic, the resulting mean stress must be accounted for in expression (9) of the driving force
for reaction z. The evolution of the concentration with the chemical potential remains linear, but the slope is modified,
as compared to the free swelling case. The mean stress also evolves linearly with the chemical potential. According to (41),
no inelastic deviatoric strain may develop. When the constraint is not hydrostatic, the deviatoric components of the stress
affect the yield condition, and cause deviatoric flow.

Contrary to the viscoelastic kinetic model of Sections 6 and 7, plasticity does not allow the stress generated during
constrained swelling to relax, even when the chemical load is held constant. Consequently, a constrained body subjected to
a given history of chemical load will not reach a homogeneous state. Instead, the field of stress and inelastic deformations
will be heterogeneous. In addition, a field of residual stresses and permanent (‘‘plastic’’) strains will persist within the body
if the constraints are subsequently removed. These features are characteristic of plasticity.

8.3. Host under fixed stress and ramp chemical potential

A host is under a fixed state of stress sij, and by itself the stress is insufficient to cause yielding. Initially, the chemical
potential of the guest atoms in the reservoir is set at value of the reference state, m¼ m0, and the concentration of the guest
atoms in the host is C ¼ C0. Subsequently, the chemical potential of the guest atoms in the reservoir is ramped up.
The effective driving force te is given by

t2
e ¼

1

2
sijsijþq 1�

M

K

� �
smþ

m�m0

O
� H�

M2

K

 !
OðC�C0Þ

" #2

ð48Þ

The yield condition is te ¼ tY . Before the chemical potential reaches the yield condition

m�m0o
Offiffiffi

q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

Y�
1

2
sijsij

r
�O 1�

M

K

� �
sm, ð49Þ

the concentration of the guest atoms in the host is unchanged. When the chemical potential exceeds the above value, the
concentration increases linearly with the chemical potential, as determined by the yield condition, te ¼ tY . This can be
readily seen by exploiting the consistency condition dte ¼ 0 in (48)

dC ¼
dm

O2
ðH�M2=KÞ

: ð50Þ

The increment of inelastic deviatoric strain is directly computed from the increment of concentration using relation (43).
The only difference with the free swelling case is the value of the chemical load needed to trigger plastic flow. According to
(48), the yield condition depends on the applied stress in the following way. Non-vanishing shear components of the stress
tensor always promote plasticity by lowering the threshold value of the external chemical potential. In the case where
MoK , a tensile mean stress promotes yield, while a compressive mean stress hinders yield. On the other hand, the slope of
the dm=dC is identical to the free swelling situation.

8.4. Chemomechanical ratcheting

Subject to a cyclic temperature and a fixed force, a metal can undergo accumulative, unidirectional plastic deformation
(e.g., Bree, 1967; Huang et al., 2001). Thin-film islands of silicon on a substrate may undergo ratcheting deformation under
cyclic lithiation and delithiation (Haftbaradaran and Gao, 2012). We now show that within the theory of reactive flow
described in this paper, chemomechanical ratcheting can happen for a host under a constant state of stress, and subject to
cyclic change in the chemical potential of the guest atoms in the reservoir. The stress itself is insufficient to cause plastic
flow. As the chemical potential is cycled, the host is brought repeatedly to the yield conditions of two types: absorbing
guest atoms and exuding guest atoms. In both cases, the inelastic strains are in the same direction as the constant
stress—that is, the host undergoes ratcheting plastic deformation. In a model that assumes reaction is in equilibrium,
ratcheting will not happen in a homogeneous state under fixed stress. This type of experiments might be used to
distinguish the two types of theories.

The phenomenon is readily understood graphically (Fig. 5). Ratcheting will occur if the constant state of stress contains
a deviatoric component. For simplicity, assume that the stress tensor admits only one non-vanishing shear component t.
The yield condition is an ellipse on the ðt,zÞ plane. A point inside the ellipse is elastic, and the host neither flows
inelastically nor reacts with the guest atoms. For a perfectly plastic host, a point outside the ellipse can never be reached.
For a point on the ellipse, the increments in the inelastic engineering shear strain and the concentration form a vector



Fig. 5. A host is subject to a constant shear stress and a cyclic chemical potential. The yield condition is represented by an ellipse on the ðt,zÞ plane.

At any point on the ellipse, the vector ðdgi=2,OdCÞ is normal to the ellipse. As the chemical potential cycles, the host absorbs and desorbs guest atoms,

both causing inelastic shear strain in the same direction of the constant shear stress.

L. Brassart, Z. Suo / J. Mech. Phys. Solids 61 (2013) 61–7772
ðdgi=2,OdCÞ normal to the ellipse. This flow rule has several implications. First, as long as the shear stress is nonzero,
an increment in the concentration always gives rise to an increment in the inelastic shear strain. Second, so long as the
increment in the concentration per cycle is finite, the increment in the shear strain is also finite. Third, regardless whether
the host absorbs or desorbs guest atoms, the increment in the shear strain is always in the same direction as the shear
stress. Thus, a cyclic change in the chemical potential causes unidirectional and incremental shear strain. From this
graphical interpretation, it is evident that the applied stress need not be constant, so long as the stress is biased toward a
direction. Also, the normality of the flow rule is inessential, so long as the reaction and flow is coupled—an increment in
concentration will cause an increment in inelastic strain.

This chemomechanical ratcheting is closely analogous to a thin film crawling under thermomechanical loading
observed in the microelectronic industry and analyzed before (Huang et al., 2001). This analysis is adapted for
chemomechanical ratcheting below. The yield condition is

t2þq
m�m0

O
� H�

M2

K

 !
OðC�C0Þ

" #2

¼ t2
Y : ð51Þ

Upon yield, as t is held constant and m ramps, the increment of the concentration is

dC ¼
dm

O2
ðH�M2=KÞ

: ð52Þ

According to the flow rule, the increment of the shear strain is proportional to the increment of the concentration

dgi ¼
Ot
qz

dC: ð53Þ

When the host absorbs guest atoms, dC40 and z¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

. When the host desorbs guest atoms, dCo0 and

z¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

. In both cases, the increment of the inelastic shear strain is in the same direction as t, giving rise to

chemomechanical ratcheting. We next follow the sequence of events as the chemical potential cycles between m0 and m1

(Fig. 6).
State A. mA ¼ m0: The initial concentration is the reference concentration C0. The applied shear stress induces an elastic

shear strain ge ¼ t=G, which remains constant throughout the loading and does not affect insertion and extraction.
Path AB. m0omomB: The rising chemical potential increases the driving force for insertion, z¼ ðm�m0Þ=O, but the yield

criterion is not reached, t2þqz2ot2
Y , so that the concentration and inelastic shear strain remain unchanged.

State B. m¼ mB: The force reaches the critical value for yielding: z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

40.

Path BC. mBomom1: Under a positive driving force for reaction, z¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

, Guest atoms are inserted into the

host. As the chemical potential ramps up, so does the concentration (52). Meanwhile the inelastic shear strain increases
according to (53).

State C. m¼ m1: The system reaches the prescribed highest chemical potential.
Path CD. m14m4mD: The dropping chemical potential causes the driving force for reaction to decrease and become

negative. The latter is given by: z¼ ðm�m0Þ=O�ðH�M2=KÞOðCC�C0Þ. However, the yield condition for extraction is not
satisfied yet: t2þqz2ot2

Y . Therefore, the concentration remains fixed, and no inelastic shear strain develops. As compared
to the value of the driving force during the path AB, the driving force now includes the contribution of a back stress which
remains constant as long as the yield criterion is not reached.



Fig. 6. When a host is subject to a constant shear stress and cyclic chemical potential, the plastic shear strain may ratchet. The chemical potential of the

environment changes between m0 and m1 with time (a). The driving force for reaction varies with the chemical potential (b). During portions of the

loading where the yield criterion is satisfied, guest atoms are inserted ðz40Þ or extracted ðzo0Þ from the host, and the concentration varies linearly with

the chemical potential (c). Both insertion and extraction are accompanied with inelastic shear strain in the direction of the applied shear stress (d).

Fig. 7. A host subject to a constant shear stress and cyclic chemical potential exhibits four types of behavior: cyclic reaction, shakedown, ratcheting,

and plastic collapse.
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State D. m¼ mD: The driving force for reaction reaches the yield condition at a negative value, z¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

.

Path DE. mD4m4m0: Under the negative driving force for reaction, guest atoms are extracted from the host. As the
chemical potential ramps down, so does the concentration (52). Meanwhile the inelastic shear strain keeps increasing
according to (53).

State E. m¼ m0: The system reaches the prescribed lowest chemical potential.
Path EF. m0omomF: The rising chemical potential causes the driving force to increase, going from negative value to

positive value.
State F. m¼ mF: The force again reaches the critical value for yielding: z¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2

Y�t2Þ=q
q

40. Due to the back stress, we
have mF 4mB.

Path FC0. mF omom1: Guest atoms are inserted into the host driven by a positive z, according to (52). The force remains
constant. The inelastic shear strain increases according to (53).
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State C0. m¼ m1: The chemical potential reaches the prescribed highest point. Starting from state C0, as the chemical
potential cycles, the driving force z and the concentration cycle around the loop CDEF. The inelastic shear strain, however,
increases by a definite amount each cycle.

Depending on the value of the shear stress and the range of the chemical potential, the host exhibits four types of
behavior: plastic collapse, cyclic reaction, shakedown, and ratcheting (Fig. 7). If t=tY Z1, the host flows plastically under
the shear stress alone without the aid of the chemical load. If q½ðm1�m0Þ=2O�2þt2ot2

Y , the host may plastically deform
during the first cycle, but cycles elastically afterward (shakedown). Outside the shakedown region, if t¼ 0, the change in
chemical potential causes cyclic insertion and extraction but no plastic shear strain. If t40 and the range of the chemical
potential is above the shakedown condition, the host will ratchet: while the concentration cycles, the plastic shear strain
increases by a fixed amount each cycle, given by

Dgi ¼
4t

qðH�M2=KÞ

ffiffiffi
q
p
ðm1�m0Þ

2O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

Y�t2
q �1

2
64

3
75: ð54Þ

9. Concluding remarks

We have formulated a theory of reactive flow in solids by assuming that reaction and flow are both nonequilibrium
processes. As an extension of the von Mises theory of plasticity, we have described a chemomechanical yield condition to
include both the deviatoric stress and the driving force for reaction. Similarly, the Reuss flow rule is extended to account
for concurrent flow and reaction. The resulting theory predicts that the driving force for reaction can lower the stress
needed for flow. That is, a reaction can stimulate the flow in a host too brittle to flow under mechanical load alone.
The theory further predicts chemomechanical ratcheting. To focus on the essential idea, the body of the paper develops a
theory of minimal ingredients, and is devoted to a small piece of the host evolving through homogeneous states. The host
as a whole in general evolves in time through a sequence of inhomogeneous states (Appendix A). Stress and chemical
potential are then determined by solving the usual equations for mechanical equilibrium and mass conservation for given
boundary conditions. A constitutive model for long range diffusion flux is also provided. The general framework for
inhomogeneous field encompasses the case of nonequilibrium surface reaction.
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Appendix A. Inhomogeneous states

When guest atoms diffuse into a host solid and react, the host can flow inelastically. The three kinetic
processes—diffusion, reaction and flow—are concurrent. The host in general evolves in time through a sequence of
inhomogeneous fields. Following a common practice in formulating a field theory, we regard the host as a sum of many
small pieces (Fig. 1). Each small piece evolves in time by reaction and flow through a sequence of homogeneous states, as
studied in the body of the paper. Different small pieces in the host communicate through the compatibility of deformation,
balance of forces, conservation of the number of guest atoms, and kinetics of the diffusion. These general principles are
independent of the internal degrees of freedom, so that the governing equations for the communication are the same as
those in poroelasticity (Biot, 1941). Here we list these equations, and confirm that the theory of concurrent reaction,
flow and diffusion satisfies a thermodynamic inequality. This Appendix relies on the body of the paper only through
inequality (1).

The host as a whole satisfies a thermodynamic inequality. Name each small piece of the host by its coordinate x. At time t,
the displacement of the piece is uiðx,tÞ. The host is subject to a field of body force Biðx,tÞ in the volume and a field of surface
force Tiðx,tÞ on part of its boundary, while the rest of the boundary of the host the displacement is prescribed. The applied
forces can be represented by a field of weights. The change of the potential energy of the weights per unit time is
�
R

Bk@uk=@tdV�
R

Tk@uk=@tdS, where the first integral extends over the volume of the host, and the second integral extends
over the part of the boundary on which the surface force is applied. Let Jkðx,tÞ be the field of flux of the guest atoms, namely,
Jknk is the number of guest atoms crossing a surface element per unit area per unit time, where nk is the unit vector normal
to the element of area. At time t, part of the boundary of the host is in contact with a reservoir in which the chemical
potential of the guest atoms is mðtÞ, while the rest of the boundary does not exchange guest atoms with the reservoir,
Jknk ¼ 0. The change in the Helmholtz free energy of the reservoir per unit time is

R
ðm�m0ÞJknkdS, where the integral extends
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over the part of the boundary in contact with the reservoir. The guest atoms in the host is further subject to a wind force
Fwind, such that the mechanism applying the wind force changes its potential energy per unit time by �

R
Fwind

k JkdV . The
Helmholtz free energy of the host changes per unit time by

R
ð@W=@tÞdV . The host, reservoir, weights and the mechanism

applying the wind force together form a composite thermodynamic system. The composite is isothermal: it exchanges
energy with the rest of world by heat, but not by work. The composite conserves all species of atoms. Thermodynamics
requires that the Helmholtz free energy of the composite should never increaseZ

@W

@t
dV�

Z
Bk
@uk

@t
dV�

Z
Tk
@uk

@t
dS�

Z
Fwind

k JkdVþ

Z
ðm�m0ÞJknkdSr0: ðA1Þ

This inequality applies to the host as a whole and generalizes (1).
We next list the equations governing the communication between small pieces in the host. The compatibility of

deformation requires that the field of strain be

eij ¼
1

2

@uiðx,tÞ

@xj
þ
@ujðx,tÞ

@xi

� �
: ðA2Þ

Let sijðx,tÞ be the field of stress in the host. The balance of forces requires that

@sijðx,tÞ

@xj
þBiðx,tÞ ¼ 0 ðA3Þ

in the volume of the host, and that

sijðx,tÞnj ¼ Tiðx,tÞ ðA4Þ

on the part of the boundary of the host where the surface force is applied. Let Cðx,tÞ be the field of concentration, namely,
the number of guest atoms per unit volume of the host. The conservation of the number of atoms requires that

@Cðx,tÞ

@t
þ
@Jkðx,tÞ

@xk
¼ 0: ðA5Þ

For each small piece of the host, the surrounding pieces of the host serve as a reservoir of guest atoms. We may as well
regard the host itself as a field of reservoirs. Let mðx,tÞ be the field of the chemical potential of guest atoms in the host.
We adopt the usual kinetic model of diffusion:

Jk ¼
CD

kT
Fwind

k �
@mðx,tÞ

@xk

� �
, ðA6Þ

where D is the diffusivity of the guest atoms in the host, and kT the temperature in the unit of energy.
These equations, along with the divergence theorem, reduce the thermodynamic inequality (A1) toZ

@W

@t
�sij

@eij

@t
�ðm�m0Þ

@C

@t
� Fwind

k �
@m
@xk

� �
Jk

� �
dVþ

Z
ðm�mÞJknkdSr0: ðA7Þ

The integral over the volume is never positive because we have constructed kinetic model of reaction and flow to satisfy
(1), and because we have adopted the kinetic model of diffusion (A6). The integral over the surface in (A7) is satisfied by
requiring that

ðm�mÞJknkZ0: ðA8Þ

This inequality is satisfied by a kinetic model of interfacial reaction that relates the flux Jknk to the driving force ðm�mÞ;
a classical example is the Butler–Volmer equation in electrochemistry (see e.g. Hamann et al., 1998). Surface reactions
within electrode materials have been recently addressed by Zhao et al. (2012) and Pharr et al. (2012) in the context of the
reaction of lithium with crystalline silicon.

Appendix B. Insertion and reaction as distinct processes

The theory presented in the paper lumps insertion and reaction as a single process, the extent of which is characterized
by the concentration of guest atoms in the host. Alternatively, insertion and reaction can be regarded as two distinct
processes (Loeffel and Anand, 2011). The extent of insertion is characterized by the concentration of guest atoms in
the host, C. The extent of reaction is characterized by the fraction of the inserted guest atoms that have completed the
reaction, x. Following a procedure commonly adopted in irreversible thermodynamics (de Groot and Mazur, 1984),
insertion may be considered in local equilibrium, while chemical reaction is a nonequilibrium process driven by its
conjugate force (called the affinity). This approach is outlined here.

The Helmholtz free energy of the host is taken to be a function of the elastic strain, the concentration of guest atoms,
and the extent of reaction:

W ¼Wðee,C,xÞ: ðB1Þ
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According to differential calculus, when the independent variables change by dee
ij,dC, and dx, the Helmholtz free energy

changes by dW ¼ ð@W=@ee
ijÞde

e
ijþð@W=@CÞdCþð@W=@xÞdx.

In a metal, the volumetric change is caused by elasticity, and the volumetric strain associated with plastic flow is
negligible. During insertion and reaction, however, the inelastic volumetric strain is typically much larger than the elastic
strain. As a generalization of metal plasticity, we assume that the inelastic volumetric strain is a function of the
concentration of the inserted atoms and the extent of reaction:

ei
kk ¼ FðC,xÞ: ðB2Þ

According to differential calculus, associated with changes in the two independent variables, the volumetric inelastic
strain changes by dei

kk ¼ ð@F=@CÞdCþð@F=@xÞdx. The two partial derivatives are readily interpreted: O¼ @FðC,xÞ=@C is the
change in the volume of the host associated with inserting one guest atom (i.e., the volume of insertion), and
o¼ @FðC,xÞ=dx is a dimensionless measure of the volume of reaction.

Inserting (B1) and (B2) into the thermodynamic inequality (1), we obtain that

sij�
@W

@ee
ij

" #
dee

ijþ ðm�m0ÞþOsm�
@W

@C

� �
dCþsijdei

ijþ osm�
@W

@x

� �
dxZ0, ðB3Þ

Inequality (B3) holds for independent variations dee
ij, dCand dx. Within the rheological model in Fig. 3, the elastic strain

corresponds to the elongation of the spring and is a non-dissipative process. Consequently, the first part of (B3) vanishes,
giving

sij ¼
@Wðee,C,xÞ

@ee
ij

: ðB4Þ

The second term of (B3) corresponds to the injection of guest atoms from the reservoir to the host. Following de Groot
and Mazur (1984), we assume that insertion is in local equilibrium:

m¼ m0þ
@Wðee,C,xÞ

@C
þOsm: ðB5Þ

With rheological assumptions (B4) and (B5), the thermodynamic inequality (B3) reduces to

sijdei
ijþwdxZ0, ðB6Þ

with

w¼osm�
@Wðee,C,xÞ

@x
: ðB7Þ

This expression is the thermodynamic force that drives the reaction. Because the extent of reaction is dimensionless, the
driving force for reaction has the same dimension as energy per volume, which is the same as the dimension of stress.

The left-hand side of (B6) is a bilinear form of the changes ðdei
ij,dxÞ and their associated thermodynamic forces ðsij,wÞ.

The kinetic models should ensure that the bilinear form be positive-definite. The kinetic model may be written as

dei
ij

dt
¼ f ijðs,wÞ, dx

dt
¼ gðs,wÞ: ðB8Þ

The kinetic model has the same structure as discussed in the body of the paper (Sections 6–8). In particular, one can couple
reaction and flow by constructing chemomechanical yield surface and flow rule.
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