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INTRODUCTION
On orbital to millennial time scales, tropical 

regions experience broad, zonal changes in pre-
cipitation and temperature driven by shifts in 
the mean position of the Intertropical Conver-
gence Zone (Haug et al., 2001; Johnson et al., 
2002; Wang et al., 2004). Yet we know little 
of the climate history of equatorial regions on 
time scales of decades to centuries during the 
late Holocene, which is critical to evaluating 
current, anthropogenically driven global cli-
mate change. What is the regional phasing of 
high-frequency tropical climate change, and 
what does this phasing imply for its cause? 
How does the climate of the past century com-
pare with previous intervals in terms of rainfall 
amount and temporal stability? Recent stud-
ies have addressed some of these questions 
in tropical Africa (Brown and Johnson, 2005; 
Verschuren et al., 2000), but we remain far 
from understanding the timing, phasing, and 
causes of tropical climate variability.

METHODS AND INTERPRETATIONS
Lake Edward occupies a half-graben in cen-

tral equatorial Africa (Fig. 1). Climate in the 
region is subhumid, with average annual rainfall 
of ~0.9 m/yr and evaporation rates of ~2 m/yr 
(Russell and Johnson, 2006). Rain falls from 
October to December and March to May dur-
ing the twice-annual passage of the Intertropi-
cal Convergence Zone through the region, when 
moisture is derived from the Indian and Atlantic 
Oceans (Nicholson, 1996).

The ratio of Mg to Ca in authigenic calcite 
(%Mg) in Lake Edward’s sediments has been 
shown to be a robust and sensitive indicator of 
the moisture balance of Lake Edward through 
cross-proxy validation, including correlation of 
shifts in %Mg to lowstands in the Lake Edward 
basin (Russell et al., 2003; Russell and John-
son, 2005), and measured declines in dissolved 
Mg/Ca during recent periods of high rainfall 
(Lehman, 2002). Temperature effects on the 
%Mg in calcite in Lake Edward are weak: 
Strong, positive correlation between the δ18O 
and %Mg of calcite in Lake Edward shows 
that hydrological changes, not temperature, 
dominate trends in %Mg (Russell et al., 2003). 
During periods of drought, rising salinity con-
centrates the more conservative ion Mg2+ rela-
tive to the more reactive ion Ca2+ in lake water, 

while during wet periods, Ca2+ is recharged 
rela tive to Mg2+. These climate-driven changes 
in dissolved Mg/Ca are recorded by shifts in 
the %Mg of inorganic, authigenic calcite. 
Intervals of rising and high %Mg represent 
periods of drought, while falling or low values 
of %Mg indicate wetter conditions (Müller 
et al., 1972).

We increased the resolution of previous analy-
ses of the %Mg from Lake Edward (Russell 
et al., 2003) to centimeter-scale in four cores 
from relatively shallow water using X-ray dif-
fraction (Goldsmith et al., 1961; Fig. 1). We also 
conducted centimeter-scale %Mg analyses in 
core Edw-4P, which was recovered just south of 
the deepest part of Lake Edward and is archived 
at the Wood’s Hole Oceanographic Institution 
(Hecky and Degens, 1973). Core Edw-4P is 
composed of laminated clays and biogenic oozes, 
indicating undisturbed sedimentation, and lacks 
the frequent turbidites found in the deepest part of 
the lake, providing the highest-resolution record 
obtained thus far from Lake Edward.

We combined fi fteen accelerator mass spec-
trometry (AMS) 14C ages obtained on terres-
trial macrofossils from Edw-4P with AMS 
14C- and 210Pb-dated features in the %Mg data 
from other cores visually matched to Edw-4P 
to provide an age model for Edw-4P anchored 
by 20 ages, excluding outliers (Fig. 2). Inclu-
sion of 14C ages from the shallow-water cores 
corroborates the age model based on the dates 
from Edw-4P alone (Fig. 2). The 14C ages were 
calibrated using Calib 4.3 (Stuiver and Reimer, 
1993). This chronology shows that Edw-4P has 
an average sedimentation rate of ~3.5 mm/yr, 
providing an average sampling interval of ~3 yr 
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Figure 1. Bathymetric map of Lake Edward 
showing core sites (depth contours in m). 
Letter codes refer to core sites. Arrow marks 
location of Lake Edward on eastern edge of 
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for  centimeter- scale analyses. See the GSA Data 
Repository1 for additional 14C and 210Pb data.

RESULTS AND DISCUSSION
The %Mg profi les from the fi ve Lake Edward 

cores correlate well (Fig. 2), and vary between 
14% and 28%. These high values result from 
high dissolved Mg/Ca values characteristic of 
East African lakes of elevated salinity (Talling 
and Talling, 1965). There are small differ-
ences in %Mg values between cores that likely 
refl ect chemical gradients within the lake, with 
slightly higher values in the shallow, eastern 
half of the lake where calcite precipitation 
may be enhanced, driving dissolved Mg/Ca to 
higher values. Nevertheless, multidecadal- to 
 centennial-scale changes in the fi ve cores are 
strongly covariant and indicate large variations 
in central African water balance at decade to 
centennial time scales

Rising or high %Mg marks three major inter-
vals of drought from A.D. 540–890, 1000–1200, 
and 1400–1750, each of which was followed by 

a period of wetter conditions documented by 
falling or low %Mg (Fig. 3A). The timing of 
these three arid phases is similar to the timing 
of cool intervals in the northern high latitudes 
known as the Dark Ages and the Little Ice Age, 
as well as the period of warm conditions known 
as the Medieval Warm Period or Medieval Cli-
mate Anomaly (MCA) (Lamb, 1985), although 
the MCA and Dark Ages are marked by substan-
tial short-term regional variability that makes 
defi nitive global correlation diffi cult (Bradley 
et al., 2003). Drought during the MCA is evi-
dent across much of eastern Africa (Russell and 
Johnson, 2005), but our fi nding of drought from 
A.D. 1400 to 1750 stands in contrast to previ-
ous studies documenting wet conditions in East 
Africa during the Little Ice Age.

The most widely cited record of East African 
rainfall history during the past millennium is 
the water-level record of Lake Naivasha (Ver-
schuren et al., 2000), which shows that severe 
drought during the MCA was followed by 
increasingly wet conditions in the equatorial 
eastern rift valley until ca. A.D. 1750 (Fig. 3B), 
in contrast to Little Ice Age drought at Lake 
Edward. Other records as far west as Lake Vic-
toria also indicate moist conditions during the 
Little Ice Age (Stager et al., 2005; Thompson 
et al., 2002). In contrast, to the south of Lake 

Edward, Lake Malawi became progressively 
drier from A.D. 1400 to 1780 (Brown and John-
son, 2005), and Lake Tanganyika was generally 
low between A.D. 1550 and 1800 (Alin and 
Cohen, 2003; Cohen et al., 2005). To the west, 
Lake  Bosumtwi experienced some of the most 
dramatic lowstands of the Holocene during the 
Little Ice Age (Overpeck et al., 2002). Thus, wet 
Little Ice Age conditions in eastern equatorial 
Africa coincided with dry conditions over west-
ern and central Africa (Fig. 3B). How might this 
spatial pattern have been produced?

Zonal shifts in the position of the ITCZ are 
often invoked to explain tropical African cli-
mate variability (e.g., Brown and Johnson, 
2005), and evidence for southward shifts of the 
ITCZ in association with high-latitude cooling 
during the Little Ice Age appears robust (Baker 
et al., 2001; Brown and Johnson, 2005; Haug 
et al., 2001). However, shifts in the position 
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Figure 3. A: Ratio of Mg to Ca (%Mg) in Lake 
Edward calcite spanning the past 1400 cal 
yr B.P. Higher %Mg indicates drier condi-
tions. Note reverse scale on y-axis. B: Paleo-
climate records from Lakes Malawi, Tangan-
yika, Naivasha, Victoria, and Lake Edward. 
Decadal-scale differences in timing of onset 
and termination of events in these records 
cannot be resolved with existing age mod-
els, yet out-of-phase behavior between 
Lakes Malawi, Tanganyika, and Edward ver-
sus Naivasha and Victoria during Little Ice 
Age is clear (a.s.l.—above sea level). Malawi 
terrigenous MAR—Malawi terrigenous mass 
accumulation rate.

1GSA Data Repository item 2007014, 14C and 210Pb 
data for cores E72-4P and E03-1G, Lake  Edward, 
Uganda, is available online at www.geosociety.
org/pubs/ft2007.htm, or on request from editing@
geosociety.org or Documents Secretary, GSA, P.O. 
Box 9140, Boulder, CO 80301, USA.
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of the ITCZ alone should not result in strong 
meridional gradients across Africa. Today, 
moist, unstable fl ow from the Atlantic con-
verges with drier air from the Indian Ocean 
near the longitude of Lake Edward along a 
north-south–trending convergence zone known 
as the Congo Air Boundary (Nicholson, 1996). 
It seems plausible that shifts in the position of 
the Congo Air Boundary in the past, driven by 
large-scale changes in the Atlantic and Indian 
monsoons, may have caused large meridional 
moisture gradients across equatorial Africa.

What might cause the Congo Air Boundary 
to migrate? We argue that the key factor linking 
high-latitude cooling, the ITCZ, and moisture 
gradients within Africa is the El Niño– Southern 
Oscillation (ENSO). Numerical models and 
proxy data indicate that increased Southern 
Hemisphere insolation during the late Holocene 
and southward ITCZ migration are associated 
with more frequent and/or more intense El Niño 
events (Clement et al., 2000; Haug et al., 2001; 
Moy et al., 2002). Simulations using fully cou-
pled general circulation models suggest a shift 
toward an El Niño–like sea-surface temperature 
(SST) gradient in the Pacifi c during periods of 
northern high-latitude cooling and reductions in 
thermohaline convection (Zhang and Delworth, 
2005). El Niño events are positively correlated 
with East African rainfall through changes in the 
Walker circulation and ENSO’s effects on west-
ern Indian Ocean SSTs (Goddard and Graham, 
1999; Nicholson, 1996). Positive rainfall anom-
alies in tropical Africa during El Niño events 
are strongest in easternmost Africa, but El Niño 
is often associated with above-average rainfall 
as far west as Lake Edward (Nicholson, 1996). 
However, southward migration of the ITCZ and 
reduced meridional heat transport in the Atlan-
tic Ocean during northern high-latitude cool-
ing are predicted to cause strong, positive SST 
anomalies in the equatorial and southern tropi-
cal Atlantic basin (Vellinga and Wood, 2002), 
which weakens the African monsoon within the 
Congo Basin and decreases Atlantic moisture 
transport to inland sites such as Lakes Edward, 
Tanganyika, and Malawi. It is thus possible that 
interactions between the ITCZ and the ENSO 
system during the Little Ice Age could have trig-
gered a shift toward El Niño–like conditions and 
increased rainfall in easternmost Africa, while 
southward ITCZ migration triggered drought in 
the west.

Support for the ENSO system as the key 
linking variable in regional Little Ice Age 
varia bility comes from proxy data and mod-
eling studies of western Pacifi c and other 
paleo climate records spread across the trop-
ics. Coral records suggest stronger zonal SST 
gradients across the equa torial Pacifi c dur-
ing the twelfth century than during the sev-
enteenth century, suggesting a shift toward 

El Niño–like conditions during the Little Ice 
Age (Cobb et al., 2003). Paleolimnological 
data from Eastern Java indicate drought and 
El Niño–like conditions from A.D. 1450–1650 
and 1700–1750 (Crausbay et al., 2006). ENSO 
models suggest that El Niño–like conditions in 
the western Pacifi c during much of the Little 
Ice Age occurred due to solar and volcanic 
forcing (Mann et al., 2005). Elsewhere in the 
 tropics, trends in the Ti content of sediments 
in the Cariaco Basin off the Venezuelan coast 
indicate decreased rainfall from A.D. 1350 to 
1740 (Haug et al., 2001), and conditions were 
also dry across much of southern Asia, from 
the Arabian peninsula (Fleitmann et al., 2004) 
to tropical China (Wang et al., 2005). Each of 
these climate anomalies can be explained by 
southward ITCZ migration, increased El Niño 
events, or both (Diaz and Kiladis, 1992; Vel-
linga and Wood, 2002). In contrast, our obser-
vation of strong meridional gradients across 
the equator within Africa provides a unique 
observatory to investigate gradients across the 
tropics and interactions between the high lati-
tudes, the ITCZ, and ENSO, and, together with 
the records presented already, these factors 
suggest a shift toward El Niño–like conditions 
during the Little Ice Age.

Was the dipole structure that emerged in 
Africa during the Little Ice Age unique? Lakes 
Naivasha, Edward, Tanganyika, and Victoria 
all experienced drought during the MCA. This 
could indicate that interactions between the 
high latitudes, the ITCZ, and ENSO do not 
produce meridional gradients in Africa during 
high- latitude warming, perhaps due to differ-
ences in the behavior of the Congo Air Bound-
ary over Africa during high-latitude warming 
and northward ITCZ migration. However, it 
should be noted that warming during the MCA 
was regionally and temporally variable (Bradley 
et al., 2003), and perhaps had a lesser impact 
on the ENSO system than large-scale Northern 
Hemisphere cooling during the Little Ice Age. 
Additional data are needed to better constrain 
interactions between the ITCZ, ENSO, and 
African climate under multiple climate states. 
Yet negative shifts in the oxygen isotopic com-
position of glacial ice from Mount Kilimanjaro 
could indicate wetter conditions between ca. 
3200 and 2700 cal yr B.P. (Thompson et al., 
2002), when Lake Edward (Russell and John-
son, 2005) and northern South America (Haug 
et al., 2001) experienced drought and the high 
latitudes were cool (Bond et al., 2001), similar 
to the pattern observed during the Little Ice Age. 
This could suggest persistent ENSO modulation 
of global climate anomalies during late Holo-
cene intervals of high-latitude cooling, as pre-
dicted by Zhang and Delworth (2005).

Numerous shorter-term shifts in %Mg indi-
cate substantial decadal-scale climate varia bility 

in central Africa during the past millennium. 
These include recent drought from A.D. 1800 
to 1850, wet conditions from A.D. 1850 to 
1880, and falling lake levels near the turn of 
the century. This history matches well with 
the timing of rainfall and lake-level changes 
observed elsewhere in equatorial Africa, and 
shows striking similarities to coral-based SST 
reconstructions in the equa torial Indian Ocean 
(Cole et al., 2000), confi rming an important 
role for the Indian Ocean in decadal Afri-
can rainfall anomalies (Russell and Johnson, 
2005). We also see evidence for at least three 
discrete decadal-scale drought events within 
the MCA; this is a new fi nding for Africa that 
supports previous suggestions for signifi cant 
short-term, regional variability within this time 
period (Bradley et al., 2003).

The relatively low %Mg values in Lake 
Edward during the twentieth century indicate 
that the region is experiencing an unusually 
prolonged period of stable, wet conditions in 
comparison to previous centuries of the past 
millennium. This pattern is similar to Lakes 
Tanganyika (Cohen et al., 2005) and Malawi 
(Brown and Johnson, 2005). Unless global 
warming is a mitigating factor (e.g., Treydte 
et al., 2006), central Africa is overdue for a 
return to decades-long drought that exceeds 
anything observed in the past century. In light 
of sub-Saharan Africa’s burgeoning population 
and the demands placed on water resources by 
that population, future management practices 
must be fundamentally reorganized to account 
for the dynamic nature of African climate at 
decadal to centennial time scales.
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